Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 25(11): 7750-7762, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36857625

RESUMEN

DNA sequences of ideal and natural geometries are examined, studying their charge transport properties as mutation detectors. Ideal means textbook geometry. Natural means naturally distorted sequences; geometry taken from available databases. A tight-binding (TB) wire model at the base-pair level is recruited, together with a transfer matrix technique. The relevant TB parameters are obtained using a linear combination of all valence orbitals of all atoms, using geometry, either ideal or natural, as the only input. The investigated DNA sequences contain: (i) point substitution mutations - specifically, the transitions guanine (G) ↔ adenine (A) - and (ii) sequences extracted from human chromosomes, modified by expanding the cytosine-adenine-guanine triplet [(CAG)n repeats] to mimic the following diseases: (a) Huntington's disease, (b) Kennedy's disease, (c) Spinocerebellar ataxia 6, (d) Spinocerebellar ataxia 7. Quantities such as eigenspectra, density of states, transmission coefficients, and the - more experimentally relevant - current-voltage (I-V) curves are studied, intending to find adequate features to recognize mutations. To this end, the normalised deviation of the I-V curve from the origin (NDIV) is also defined. The features of the NDIV seem to provide a clearer picture, being sensitive to the number of point mutations and allowing to characterise the degree of danger of developing the aforementioned diseases.


Asunto(s)
ADN , Enfermedad de Huntington , Humanos , Mutación , Adenina , Guanina
2.
Phys Chem Chem Phys ; 24(13): 7779-7787, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293921

RESUMEN

Recent synthesis of cyclo[18]carbon has spurred increasing interest in carbon rings. We focus on a comparative inspection of ground and excited states, as well as of hole transfer properties of cumulenic and polyynic cyclo[18]carbon via Density Functional Theory (DFT), time-dependent DFT (TD-DFT) and real-time time-dependent DFT (RT-TDDFT). Zero-point vibrations are also accounted for, using a Monte Carlo sampling technique and a less exact, yet mode-resolved, quadratic approximation. The inclusion of zero-point vibrations leads to a red-shift on the HOMO-LUMO gap and the first singlet and triplet excitation energies of both conformations, correcting the values of the 'static' configurations by 9% to 24%. Next, we oxidize the molecule, creating a hole at one carbon atom. Hole transfer along polyynic cyclo[18]carbon is decreased in magnitude compared to its cumulenic counterpart and lacks the symmetric features the latter displays. Contributions by each mode to energy changes and hole transfer between diametrically opposed atoms vary, with specific bond-stretching modes being dominant.

3.
Materials (Basel) ; 16(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110035

RESUMEN

We employ the Tight Binding Fishbone-Wire Model to study the electronic structure and coherent transfer of a hole (the absence of an electron created by oxidation) in all possible ideal B-DNA dimers as well as in homopolymers (one base pair repeated along the whole sequence with purine on purine). The sites considered are the base pairs and the deoxyriboses, with no backbone disorder. For the time-independent problem, we calculate the eigenspectra and the density of states. For the time-dependent problem after oxidation (i.e., the creation of a hole either at a base pair or at a deoxyribose), we calculate the mean-over-time probabilities to find the hole at each site and establish the frequency content of coherent carrier transfer by computing the Weighted Mean Frequency at each site and the Total Weighted Mean Frequency of a dimer or polymer. We also evaluate the main oscillation frequencies of the dipole moment along the macromolecule axis and the relevant amplitudes. Finally, we focus on the mean transfer rates from an initial site to all others. We study the dependence of these quantities on the number of monomers that are used to construct the polymer. Since the value of the interaction integral between base pairs and deoxyriboses is not well-established, we treat it as a variable and examine its influence on the calculated quantities.

4.
J Phys Chem B ; 125(16): 3986-4003, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857373

RESUMEN

Hole transfer along the axis of duplex DNA has been the focus of physical chemistry research for decades, with implications in diverse fields, from nanotechnology to cell oxidative damage. Computational approaches are particularly amenable for this problem, to complement experimental data for interpretation of transfer mechanisms. To be predictive, computational results need to account for the inherent mobility of biological molecules during the time frame of experimental measurements. Here, we address the structural variability of B-DNA and its effects on hole transfer in a combined molecular dynamics (MD) and real-time time-dependent density functional theory (RT-TDDFT) study. Our results show that quantities that characterize the charge transfer process, such as the time-dependent dipole moment and hole population at a specific site, are sensitive to structural changes that occur on the nanosecond time scale. We extend the range of physical properties for which such a correlation has been observed, further establishing the fact that quantitative computational data on charge transfer properties should include statistical averages. Furthermore, we use the RT-TDDFT results to assess an efficient tight-binding method suitable for high-throughput predictions. We demonstrate that charge transfer, although affected by structural variability, on average, remains strong in AA and GG dimers.


Asunto(s)
ADN Forma B , Simulación de Dinámica Molecular , ADN , Teoría Funcional de la Densidad
5.
Materials (Basel) ; 13(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911864

RESUMEN

We investigate hole transfer in open carbynes, i.e., carbon atomic nanowires, using Real-Time Time-Dependent Density Functional Theory (RT-TDDFT). The nanowire is made of N carbon atoms. We use the functional B3LYP and the basis sets 3-21G, 6-31G*, cc-pVDZ, cc-pVTZ, cc-pVQZ. We also utilize a few Tight-Binding (TB) wire models, a very simple model with all sites equivalent and transfer integrals given by the Harrison ppπ expression (TBI) as well as a model with modified initial and final sites (TBImod) to take into account the presence of one or two or three hydrogen atoms at the edge sites. To achieve similar site occupations in cumulenes with those obtained by converged RT-TDDFT, TBImod is sufficient. However, to achieve similar frequency content of charge and dipole moment oscillations and similar coherent transfer rates, the TBImod transfer integrals have to be multiplied by a factor of four (TBImodt4times). An explanation for this is given. Full geometry optimization at the B3LYP/6-31G* level of theory shows that in cumulenes bond length alternation (BLA) is not strictly zero and is not constant, although it is symmetrical relative to the molecule center. BLA in cumulenic cases is much smaller than in polyynic cases, so, although not strictly, the separation to cumulenes and polyynes, approximately, holds. Vibrational analysis confirms that for N even all cumulenes with coplanar methylene end groups are stable, for N odd all cumulenes with perpendicular methylene end groups are stable, and the number of hydrogen atoms at the end groups is clearly seen in all cumulenic and polyynic cases. We calculate and discuss the Density Functional Theory (DFT) ground state energy of neutral molecules, the CDFT (Constrained DFT) "ground state energy" of molecules with a hole at one end group, energy spectra, density of states, energy gap, charge and dipole moment oscillations, mean over time probabilities to find the hole at each site, coherent transfer rates, and frequency content, in general. We also compare RT-TDDFT with TB results.

6.
Materials (Basel) ; 12(13)2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31284609

RESUMEN

We study the energy structure and the coherent transfer of an extra electron or hole along aperiodic polymers made of N monomers, with fixed boundaries, using B-DNA as our prototype system. We use a Tight-Binding wire model, where a site is a monomer (e.g., in DNA, a base pair). We consider quasi-periodic (Fibonacci, Thue-Morse, Double-Period, Rudin-Shapiro) and fractal (Cantor Set, Asymmetric Cantor Set) polymers made of the same monomer (I polymers) or made of different monomers (D polymers). For all types of such polymers, we calculate the highest occupied molecular orbital (HOMO) eigenspectrum and the lowest unoccupied molecular orbital (LUMO) eigenspectrum, the HOMO-LUMO gap and the density of states. We examine the mean over time probability to find the carrier at each monomer, the frequency content of carrier transfer (Fourier spectra, weighted mean frequency of each monomer, total weighted mean frequency of the polymer), and the pure mean transfer rate k. Our results reveal that there is a correspondence between the degree of structural complexity and the transfer properties. I polymers are more favorable for charge transfer than D polymers. We compare k ( N ) of quasi-periodic and fractal sequences with that of periodic sequences (including homopolymers) as well as with randomly shuffled sequences. Finally, we discuss aspects of experimental results on charge transfer rates in DNA with respect to our coherent pure mean transfer rates.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda