Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 97(10): e0101423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37712705

RESUMEN

IMPORTANCE: Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.


Asunto(s)
Adenovirus de los Simios , Terapia Genética , Vectores Genéticos , Vacunas , Animales , Humanos , Adenovirus Humanos/genética , Adenovirus de los Simios/genética , Vectores Genéticos/genética , Células HEK293 , Macaca/genética
2.
J Virol ; 95(16): e0061721, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34105996

RESUMEN

The current pandemic of COVID-19 is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 spike protein receptor-binding domain (RBD) is the critical determinant of viral tropism and infectivity. To investigate whether naturally occurring RBD mutations during the early transmission phase have altered the receptor binding affinity and infectivity, we first analyzed in silico the binding dynamics between SARS-CoV-2 RBD mutants and the human angiotensin-converting enzyme 2 (ACE2) receptor. Among 32,123 genomes of SARS-CoV-2 isolates (December 2019 through March 2020), 302 nonsynonymous RBD mutants were identified and clustered into 96 mutant types. The six dominant mutations were analyzed applying molecular dynamics simulations (MDS). The mutant type V367F continuously circulating worldwide displayed higher binding affinity to human ACE2 due to the enhanced structural stabilization of the RBD beta-sheet scaffold. The MDS also indicated that it would be difficult for bat SARS-like CoV to infect humans. However, the pangolin CoV is potentially infectious to humans. The increased infectivity of V367 mutants was further validated by performing receptor-ligand binding enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and pseudotyped virus assays. Phylogenetic analysis of the genomes of V367F mutants showed that during the early transmission phase, most V367F mutants clustered more closely with the SARS-CoV-2 prototype strain than the dual-mutation variants (V367F+D614G), which may derivate from recombination. The analysis of critical RBD mutations provides further insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin under negative selection pressure and supports the continuing surveillance of spike mutations to aid in the development of new COVID-19 drugs and vaccines. IMPORTANCE A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the pandemic of COVID-19. The origin of SARS-CoV-2 was associated with zoonotic infections. The spike protein receptor-binding domain (RBD) is identified as the critical determinant of viral tropism and infectivity. Thus, whether mutations in the RBD of the circulating SARS-CoV-2 isolates have altered the receptor binding affinity and made them more infectious has been the research hot spot. Given that SARS-CoV-2 is a novel coronavirus, the significance of our research is in identifying and validating the RBD mutant types emerging during the early transmission phase and increasing human angiotensin-converting enzyme 2 (ACE2) receptor binding affinity and infectivity. Our study provides insights into the evolutionary trajectory of early SARS-CoV-2 variants of zoonotic origin. The continuing surveillance of RBD mutations with increased human ACE2 affinity in human or other animals is critical to the development of new COVID-19 drugs and vaccines against these variants during the sustained COVID-19 pandemic.


Asunto(s)
Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/transmisión , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Cinética , Simulación de Dinámica Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/clasificación , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Termodinámica , Valina/química , Valina/metabolismo , Virulencia , Acoplamiento Viral
3.
Front Microbiol ; 13: 911694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633710

RESUMEN

Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.

4.
Signal Transduct Target Ther ; 7(1): 138, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474215

RESUMEN

The current pandemic of COVID-19 is fueled by more infectious emergent Omicron variants. Ongoing concerns of emergent variants include possible recombinants, as genome recombination is an important evolutionary mechanism for the emergence and re-emergence of human viral pathogens. In this study, we identified diverse recombination events between two Omicron major subvariants (BA.1 and BA.2) and other variants of concern (VOCs) and variants of interest (VOIs), suggesting that co-infection and subsequent genome recombination play important roles in the ongoing evolution of SARS-CoV-2. Through scanning high-quality completed Omicron spike gene sequences, 18 core mutations of BA.1 (frequency >99%) and 27 core mutations of BA.2 (nine more than BA.1) were identified, of which 15 are specific to Omicron. BA.1 subvariants share nine common amino acid mutations (three more than BA.2) in the spike protein with most VOCs, suggesting a possible recombination origin of Omicron from these VOCs. There are three more Alpha-related mutations in BA.1 than BA.2, and BA.1 is phylogenetically closer to Alpha than other variants. Revertant mutations are found in some dominant mutations (frequency >95%) in the BA.1. Most notably, multiple characteristic amino acid mutations in the Delta spike protein have been also identified in the "Deltacron"-like Omicron Variants isolated since November 11, 2021 in South Africa, which implies the recombination events occurring between the Omicron and Delta variants. Monitoring the evolving SARS-CoV-2 genomes especially for recombination is critically important for recognition of abrupt changes to viral attributes including its epitopes which may call for vaccine modifications.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Aminoácidos , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación/genética , Recombinación Genética/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
Virol Sin ; 36(3): 354-364, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32458297

RESUMEN

Human adenoviruses (HAdVs) are highly contagious and result in large number of acute respiratory disease (ARD) cases with severe morbidity and mortality. Human adenovirus type 3 (HAdV-3) is the most common type that causes ARD outbreaks in Asia, Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAdV-3 was constructed based on a commercially-available replication-defective HAdV-5 gene therapy and vaccine vector. The entire HAdV-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAdV-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAdV-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twenty-generation passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAdV-3. Therefore, this recombinant, attenuated, and safe adenovirus vaccine is a promising HAdV-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAdV-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.


Asunto(s)
Infecciones por Adenovirus Humanos , Vacunas contra el Adenovirus , Adenovirus Humanos , Adenovirus Humanos/genética , Animales , Anticuerpos Antivirales , Asia , Europa (Continente) , Ratones , Ratones Endogámicos BALB C
6.
Virol Sin ; 36(6): 1400-1410, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34224109

RESUMEN

Human adenovirus type 55 (HAdV-B55) is a re-emergent acute respiratory disease pathogen that causes adult community-acquired pneumonia (CAP). Previous studies have shown that the receptor of HAdV-B14, which genome is highly similar with HAdV-B55, is human Desmoglein 2 (DSG2). However, whether the receptor of HAdV-B55 is DSG2 is undetermined because there are three amino acid mutations in the fiber gene between HAdV-B14 and HAdV-B55. Here, firstly we found the 3T3 cells, a mouse embryo fibroblast rodent cell line which does not express human DSG2, were able to be infected by HAdV-B55 after transfected with pcDNA3.1-DSG2, while normal 3T3 cells were still unsusceptible to HAdV-B55 infection. Next, A549 cells with hDSG2 knock-down by siRNA were hard to be infected by HAdV-B3/-B14/-B55, while the control siRNA group was still able to be infected by all these types of HAdVs. Finally, immunofluorescence confocal microscopy indicated visually that Cy3-conjugated HAdV-B55 viruses entered A549 cells by binding to DSG2 protein. Therefore, DSG2 is a major receptor of HAdV-B55 causing adult CAP. Our finding is important for better understanding of interactions between adenoviruses and host cells and may shed light on the development of new drugs that can interfere with these processes as well as for the development of potent prophylactic vaccines.


Asunto(s)
Infecciones por Adenovirus Humanos , Desmogleína 2 , Neumonía Viral/genética , Células 3T3 , Células A549 , Adenovirus Humanos , Animales , Infecciones Comunitarias Adquiridas/virología , Desmogleína 2/genética , Humanos , Ratones , Receptores Virales/genética
7.
Virol Sin ; 35(6): 685-698, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32997322

RESUMEN

The World Health Organization (WHO) has declared coronavirus disease 2019 (COVID-19) is the first pandemic caused by coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there is no effective anti-SARS-CoV-2 drug approved worldwide for treatment of patients with COVID-19. Therapeutic options in response to the COVID-19 outbreak are urgently needed. To facilitate the better and faster development of therapeutic COVID-19 drugs, we present an overview of the global promising therapeutic drugs, including repurposing existing antiviral agents, network-based pharmacology research, antibody development and traditional Chinese medicine. Among all these drugs, we focus on the most promising drugs (such as favipiravir, tocilizumab, SARS-CoV-2 convalescent plasma, hydroxychloroquine, Lianhua Qingwen, interferon beta-1a, remdesivir, etc.) that have or will enter the final stage of human testing-phase III-IV clinical trials.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Medicina Tradicional China/métodos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Amidas/uso terapéutico , Animales , Anticuerpos Antivirales/administración & dosificación , Antivirales/farmacología , COVID-19/terapia , Reposicionamiento de Medicamentos , Humanos , Inmunización Pasiva , Pandemias , Pirazinas/uso terapéutico , Organización Mundial de la Salud , Sueroterapia para COVID-19
8.
Front Immunol ; 11: 602256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424848

RESUMEN

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.


Asunto(s)
COVID-19/prevención & control , SARS-CoV-2 , Vacunas , Animales , Acrecentamiento Dependiente de Anticuerpo , Humanos , SARS-CoV-2/fisiología
9.
Front Microbiol ; 11: 1079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547518

RESUMEN

The trivalent seasonal influenza vaccine was the only approved and available vaccine during the 2016-2018 influenza seasons. It did not include the B/Yamagata strain. In this study, we report an acute respiratory disease outbreak associated with influenza B/Yamagata infections in Guangzhou, Southern China (January through March, 2018). Among the 9914 patients, 2241 (22.6%) were positive for the influenza B virus, with only 312 (3.1%) positive for the influenza A virus. The influenza B/Yamagata lineage dominated during this period in Southern China. The highest incidence of influenza A virus infection occurred in the children aged 5-14 years. In contrast, populations across all age groups were susceptible to the influenza B virus. Phylogenetic, mutations, and 3D structure analyses of hemagglutinin (HA) genes were performed to assess the vaccine-virus relatedness. The recommended A/H1N1 vaccine strain (A/Michigan/45/2015) during both 2017-2018 and 2018-2019 was antigen-specific for these circulating isolates (clade 6B.1) in Spring 2018. An outbreak of influenza B/Yamagata (clade 3) infections in 2018 occurred during the absence of the corresponding vaccine during 2016-2018. The recommended influenza B/Yamagata vaccine strain (B/Phuket/3073/2013) for the following season (2018-2019) was antigen-specific. Although there were only a few influenza B/Victoria infections in Spring 2018, five amino acid mutations were identified in the HA antigenic sites of the 19 B/Victoria isolates (clade 1A), when compared with the 2016-2018 B/Victoria vaccine strain. The number was larger than expected and suggested that the influenza B HA gene may be more variable than previously thought. One of the mutations (K180N) was noted to likely alter the epitope and to potentially affect the viral antigenicity. Seven mutations were also identified in the HA antigenic sites of 2018-2020 B/Victoria vaccine strain, of which some or all may reduce immunogenicity and the protective efficacy of the vaccine, perhaps leading to more outbreaks in subsequent seasons. The combined epidemiological, phylogenetic, mutations, and 3D structural analyses of the HA genes of influenza strains reported here contribute to the understanding and evaluation of how HA mutations affect vaccine efficacy, as well as to providing important data for screening and selecting more specific, appropriate, and effective influenza vaccine candidate strains.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda