Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Cell ; 184(18): 4697-4712.e18, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34363756

RESUMEN

Animals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. C. elegans protects itself from pathogens by "reading" bacterial small RNAs, using this information to both induce avoidance and transmit memories for four generations. Here, we found that memories can be transferred from either lysed animals or from conditioned media to naive animals via Cer1 retrotransposon-encoded virus-like particles. Moreover, Cer1 functions internally at the step of transmission of information from the germline to neurons and is required for learned avoidance. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small-RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


Asunto(s)
Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Patrón de Herencia/genética , Memoria/fisiología , Animales , Reacción de Prevención , Conducta Animal , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Vesículas Extracelulares/metabolismo , Regulación de la Expresión Génica , Genoma , Células Germinativas/metabolismo , ARN/metabolismo , Interferencia de ARN , Virión/metabolismo
2.
Nature ; 628(8008): 639-647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570691

RESUMEN

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Asunto(s)
Edición Génica , Proteínas de Unión al ARN , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Células K562 , Poli U/genética , Poli U/metabolismo , ARN Polimerasa III/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306481

RESUMEN

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Células Endoteliales , Proteoma , Péptidos
4.
Nature ; 586(7829): 445-451, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908307

RESUMEN

Caenorhabditis elegans must distinguish pathogens from nutritious food sources among the many bacteria to which it is exposed in its environment1. Here we show that a single exposure to purified small RNAs isolated from pathogenic Pseudomonas aeruginosa (PA14) is sufficient to induce pathogen avoidance in the treated worms and in four subsequent generations of progeny. The RNA interference (RNAi) and PIWI-interacting RNA (piRNA) pathways, the germline and the ASI neuron are all required for avoidance behaviour induced by bacterial small RNAs, and for the transgenerational inheritance of this behaviour. A single P. aeruginosa non-coding RNA, P11, is both necessary and sufficient to convey learned avoidance of PA14, and its C. elegans target, maco-1, is required for avoidance. Our results suggest that this non-coding-RNA-dependent mechanism evolved to survey the microbial environment of the worm, use this information to make appropriate behavioural decisions and pass this information on to its progeny.


Asunto(s)
Reacción de Prevención , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , ARN no Traducido/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Neuronas/metabolismo , Pseudomonas aeruginosa/patogenicidad , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Especificidad de la Especie , Factor de Crecimiento Transformador beta/metabolismo , Testamentos
5.
Nature ; 571(7765): 349-354, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292549

RESUMEN

Ascidian embryos highlight the importance of cell lineages in animal development. As simple proto-vertebrates, they also provide insights into the evolutionary origins of cell types such as cranial placodes and neural crest cells. Here we have determined single-cell transcriptomes for more than 90,000 cells that span the entirety of development-from the onset of gastrulation to swimming tadpoles-in Ciona intestinalis. Owing to the small numbers of cells in ascidian embryos, this represents an average of over 12-fold coverage for every cell at every stage of development. We used single-cell transcriptome trajectories to construct virtual cell-lineage maps and provisional gene networks for 41 neural subtypes that comprise the larval nervous system. We summarize several applications of these datasets, including annotating the synaptome of swimming tadpoles and tracing the evolutionary origin of cell types such as the vertebrate telencephalon.


Asunto(s)
Linaje de la Célula/genética , Ciona intestinalis/citología , Ciona intestinalis/genética , Análisis de la Célula Individual , Transcriptoma , Animales , Secuencia de Bases , Evolución Biológica , Ciona intestinalis/clasificación , Ciona intestinalis/crecimiento & desarrollo , Gastrulación , Redes Reguladoras de Genes , Larva/citología , Larva/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Notocorda/citología , Notocorda/embriología , Especificidad de Órganos , Sinapsis/genética , Sinapsis/metabolismo
6.
Infect Immun ; : e0050923, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526063

RESUMEN

Diabetes mellitus, characterized by impaired insulin signaling, is associated with increased incidence and severity of infections. Various diabetes-related complications contribute to exacerbated bacterial infections, including hyperglycemia, innate immune cell dysfunction, and infection with antibiotic-resistant bacterial strains. One defining symptom of diabetes is hyperglycemia, resulting in elevated blood and tissue glucose concentrations. Glucose is the preferred carbon source of several bacterial pathogens, and hyperglycemia escalates bacterial growth and virulence. Hyperglycemia promotes specific mechanisms of bacterial virulence known to contribute to infection chronicity, including tissue adherence and biofilm formation. Foot infections are a significant source of morbidity in individuals with diabetes and consist of biofilm-associated polymicrobial communities. Bacteria perform complex interspecies behaviors conducive to their growth and virulence within biofilms, including metabolic cross-feeding and altered phenotypes more tolerant to antibiotic therapeutics. Moreover, the metabolic dysfunction caused by diabetes compromises immune cell function, resulting in immune suppression. Impaired insulin signaling induces aberrations in phagocytic cells, which are crucial mediators for controlling and resolving bacterial infections. These aberrancies encompass altered cytokine profiles, the migratory and chemotactic mechanisms of neutrophils, and the metabolic reprogramming required for the oxidative burst and subsequent generation of bactericidal free radicals. Furthermore, the immune suppression caused by diabetes and the polymicrobial nature of the diabetic infection microenvironment may promote the emergence of novel strains of multidrug-resistant bacterial pathogens. This review focuses on the "triple threat" linked to worsened bacterial infections in individuals with diabetes: (i) altered nutritional availability in diabetic tissues, (ii) diabetes-associated immune suppression, and (iii) antibiotic treatment failure.

7.
PLoS Genet ; 17(2): e1009341, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539346

RESUMEN

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Asunto(s)
Ascomicetos/genética , Variación Genética , Factores Asesinos de Levadura/genética , Saccharomycetales/genética , Ascomicetos/clasificación , Ascomicetos/virología , Evolución Molecular , Flujo Génico , Transferencia de Gen Horizontal , Filogenia , ARN Bicatenario/genética , ARN Viral/genética , Saccharomyces/clasificación , Saccharomyces/genética , Saccharomyces/virología , Saccharomyces cerevisiae/genética , Saccharomycetales/clasificación , Saccharomycetales/virología , Especificidad de la Especie , Totivirus/genética
8.
J Pharmacol Exp Ther ; 385(3): 180-192, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019472

RESUMEN

Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.


Asunto(s)
Citocromo P-450 CYP3A , Alcaloides de Triptamina Secologanina , Ratas , Animales , Cetoconazol/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Morfina/farmacología , Analgésicos Opioides/farmacología
9.
Mol Cell ; 58(3): 440-52, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25818646

RESUMEN

MYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5. MYC binds WDR5 via an evolutionarily conserved "MYC box IIIb" motif that engages a shallow, hydrophobic cleft on the surface of WDR5. Structure-guided mutations in MYC that disrupt interaction with WDR5 attenuate binding of MYC at ∼80% of its chromosomal locations and disable its ability to promote induced pluripotent stem cell formation and drive tumorigenesis. Our data reveal WDR5 as a key determinant for MYC recruitment to chromatin and uncover a tractable target for the discovery of anticancer therapies against MYC-driven tumors.


Asunto(s)
Carcinogénesis/metabolismo , Cromatina/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anisotropía , Sitios de Unión/genética , Carcinogénesis/genética , Cromatina/química , Cromatina/genética , Polarización de Fluorescencia , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Células 3T3 NIH , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
10.
J Environ Health ; 85(7): 8-15, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37448651

RESUMEN

After a chemical fire, an investigation assessed health effects by using syndromic surveillance to monitor emergency department (ED) visits, a general health survey to assess the general public, and a first responders health survey to assess first responders. A total of four separate multivariable logistic regression models were developed to examine associations between reported exposure to smoke, dust, debris, or odor with any reported symptom in the general public. Syndromic surveillance identified areas with increased ED visits. Among general health survey respondents, 45.1% (911 out of 2,020) reported at least one symptom. Respondents reporting exposure to smoke, dust, debris, or odor had 4.5 (95% confidence interval (CI) [3.7, 5.5]), 4.6 (95% CI [3.6, 5.8]), 2.0 (95% CI [1.7, 2.5]), or 5.8 (95% CI [4.7, 7.3]) times the odds of reporting any symptom compared with respondents not reporting exposure to smoke, dust, debris, or odor, respectively. First responders commonly reported contact with material and being within 1 mi of the fire ≥5 hr; 10 out of 31 of first responders reported at least one symptom. There was high symptom burden reported after the fire. Results from our investigation might assist the directing of public health resources to effectively address immediate community needs and prepare for future incidents.

11.
Eat Disord ; 31(4): 405-413, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36404478

RESUMEN

Extensive literature exists on bone health in females with an eating disorder, yet few have studied males. Our study assessed clinician confidence and current practices for assessing bone health in patients with an eating disorder. We also aimed to identify any differences in practice based on patient sex. Our 31-item survey, distributed to adolescent clinicians in the United States via the Society for Adolescent Health and Medicine (SAHM) listserv, assessed clinician confidence and practices for assessing bone mineral density in both male and female adolescents with an eating disorder. Findings showed that clinicians (n = 104) were less confident in assessing bone mineral density in males compared to females (p < .001), yet there was no significant difference in rates of obtaining a DXA (p = .390). Although clinicians are less confident assessing bone health in males with an eating disorder than females, this does not appear to result in screening differences.


Asunto(s)
Densidad Ósea , Trastornos de Alimentación y de la Ingestión de Alimentos , Humanos , Masculino , Adolescente , Femenino , Adulto Joven , Estados Unidos
12.
J Pharmacol Exp Ther ; 383(3): 182-198, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153006

RESUMEN

The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Animales , Ratas , Agonistas de Receptores Adrenérgicos alfa 2 , Analgésicos Opioides/farmacología , Mitragyna/química , Naltrexona/farmacología , Receptores Adrenérgicos alfa 2 , Receptores Opioides mu/agonistas , Alcaloides de Triptamina Secologanina/farmacología , Yohimbina/farmacología
13.
Drug Metab Dispos ; 50(2): 158-167, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34759012

RESUMEN

Kratom (Mitragyna speciosa), a Southeast Asian tree, has been used for centuries in pain relief and mitigation of opium withdrawal symptoms. Mitragynine (MTG), the major kratom alkaloid, is being investigated for its potential to provide analgesia without the deleterious effects associated with typical opioids. Concerns have been raised regarding the active metabolite of MTG, 7-hydroxymitragynine (7HMG), which has higher affinity and efficacy at µ-opioid receptors than MTG. Here we investigated the hotplate antinociception, pharmacokinetics, and tissue distribution of MTG and 7HMG at equianalgesic oral doses in male and female C57BL/6 mice to determine the extent to which 7HMG metabolized from MTG accounts for the antinociceptive effects of MTG and investigate any sex differences. The mechanism of action was examined by performing studies with the opioid receptor antagonist naltrexone. A population pharmacokinetic/pharmacodynamic model was developed to predict the behavioral effects after administration of various doses of MTG and 7HMG. When administered alone, 7HMG was 2.8-fold more potent than MTG to produce antinociception. At equivalent effective doses of MTG and 7HMG, there was a marked difference in the maximum brain concentration of 7HMG achieved, i.e., 11-fold lower as a metabolite of MTG. The brain concentration of 7HMG observed 4 hours post administration, producing an analgesic effect <10%, was still 1.5-fold higher than the maximum concentration of 7HMG as a metabolite of MTG. These results provide strong evidence that 7HMG has a negligible role in the antinociceptive effects of MTG in mice. SIGNIFICANCE STATEMENT: Mitragynine (MTG) is being investigated for its potential to aid in pain relief, opioid withdrawal syndrome, and opioid use disorder. The active metabolite of MTG, 7-hydroxymitragynine (7HMG), has been shown to have abuse potential and has been implicated in the opioid-like analgesic effect after MTG administration. The results of this study suggest a lack of involvement of 7HMG in the antinociceptive effects of MTG in mice.


Asunto(s)
Alcaloides de Triptamina Secologanina , Analgésicos Opioides/farmacología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Alcaloides de Triptamina Secologanina/farmacología
14.
Behav Pharmacol ; 33(6): 427-434, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35947069

RESUMEN

Baclofen and γ-hydroxybutyrate (GHB) exert γ-aminobutyric acid (GABA)B receptor agonism and have therapeutic utility but possess different pharmacological activities. We examined whether separate groups of mice could be trained to discriminate either baclofen or GHB, and the contribution of GABAB receptors to discriminative stimulus effects. Male C57BL/6J mice were trained to discriminate either baclofen (3.2 mg/kg, intraperitoneal) or GHB (178 mg/kg, intraperitoneal) from saline under a fixed-ratio 10 schedule. The GABAB antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP 35348) was used to pharmacologically assess GABAB receptor involvement. The selectivity of the resulting discriminations was assessed with the opioid agonist morphine and the benzodiazepine midazolam. In baclofen-trained mice, both baclofen and GHB were readily discriminated. Baclofen produced a maximum of 86% baclofen-appropriate responding. CGP 35348 (320 mg/kg, i.p.) produced a 4.7-fold rightward shift in the dose-effect function. GHB produced a maximum of 85.8% baclofen-appropriate responding. In GHB-trained mice, both GHB and baclofen were readily discriminated. In GHB-trained mice, GHB produced a maximum of 85.3% drug-appropriate responding; CGP 35348 (320 mg/kg, i.p.) produced a 1.8-fold rightward shift in the GHB discrimination dose-effect function. Baclofen produced up to 70.0% GHB-appropriate responding. CGP 35348 (320 mg/kg, i.p.) significantly antagonized baclofen discrimination and baclofen produced up to 37% GHB-appropriate responding up to doses that disrupted operant responding. Morphine did not produce substitution for either baclofen or GHB. Midazolam produced partial substitution for both. GHB and baclofen discrimination assays in mice provide a useful approach for examining different receptor types mediating the effects of these two drugs.


Asunto(s)
Oxibato de Sodio , Animales , Baclofeno/farmacología , Agonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Midazolam/farmacología , Derivados de la Morfina , Receptores de GABA-B/fisiología , Oxibato de Sodio/farmacología
15.
Proc Natl Acad Sci U S A ; 116(50): 25260-25268, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767764

RESUMEN

The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt's lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents.


Asunto(s)
Linfoma de Burkitt/metabolismo , Cromatina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Linfoma de Burkitt/genética , Carcinogénesis , Línea Celular Tumoral , Cromatina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Desnudos , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética
16.
Clin Infect Dis ; 72(9): e265-e271, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32712674

RESUMEN

BACKGROUND: The weighted incidence syndromic combination antibiogram (WISCA) is an antimicrobial stewardship tool that utilizes electronic medical record data to provide real-time clinical decision support regarding empiric antibiotic prescription in the hospital setting. The aim of this study was to determine the impact of WISCA utilization for empiric antibiotic prescription on hospital length of stay (LOS). METHODS: We performed a crossover randomized controlled trial of the WISCA tool at 4 hospitals. Study participants included adult inpatients receiving empiric antibiotics for urinary tract infection (UTI), abdominal-biliary infection (ABI), pneumonia, or nonpurulent cellulitis. Antimicrobial stewardship (ASP) physicians utilized WISCA and clinical guidelines to provide empiric antibiotic recommendations. The primary outcome was LOS. Secondary outcomes included 30-day mortality, 30-day readmission, Clostridioides difficile infection, acquisition of multidrug-resistant gram-negative organism (MDRO), and antibiotics costs. RESULTS: In total, 6849 participants enrolled in the study. There were no overall differences in outcomes among the intervention versus control groups. Participants with cellulitis in the intervention group had significantly shorter mean LOS compared to participants with cellulitis in the control group (coefficient estimate = 0.53 [-0.97, -0.09], P = .0186). For patients with community acquired pneumonia (CAP), the intervention group had significantly lower odds of 30-day mortality compared to the control group (adjusted odds ratio [aOR] .58, 95% confidence interval [CI], .396, .854, P = .02). CONCLUSIONS: Use of WISCA was not associated with improved outcomes for UTI and ABI. Guidelines-based interventions were associated with decreased LOS for cellulitis and decreased mortality for CAP.


Asunto(s)
Programas de Optimización del Uso de los Antimicrobianos , Sistemas de Apoyo a Decisiones Clínicas , Adulto , Antibacterianos/uso terapéutico , Electrónica , Humanos , Pacientes Internos , Pruebas de Sensibilidad Microbiana
17.
Lab Invest ; 101(10): 1403-1410, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34193963

RESUMEN

Stable isotope labeling techniques have been widely applied in the field of metabolomics and proteomics. Before the measured mass spectral data can be used for quantitative analysis, it must be accurately corrected for isotope natural abundance and tracer isotopic impurity. Despite the increasing popularity of dual-isotope tracing strategy such as 13C-15N or 13C-2H, there are no accurate tools for correcting isotope natural abundance for such experiments in a resolution-dependent manner. Here, we present AccuCor2 as an R-based tool to perform the correction for 13C-15N or 13C-2H labeling experiments. Our method uses a newly designed algorithm to construct the correction matrices that link labeling pattern and measured mass fractions, then use non-negative least-squares to solve the labeling patterns. Our results show that the dual-isotope experiments often require a mass resolution that is high enough to resolve 13C and 15N or 13C and 2H. Otherwise, the labeling pattern is not solvable. However, this mass resolution may not be sufficiently high to resolve other non-tracer elements such as oxygen or sulfur from the tracer elements. Therefore, we design AccuCor2 to perform the correction based on the actual mass resolution of the measurements. Using both simulated and experimental data, we show that AccuCor2 performs accurate and resolution-dependent correction for dual-isotope tracer data.


Asunto(s)
Marcaje Isotópico/métodos , Isótopos/análisis , Programas Informáticos , Algoritmos , Espectrometría de Masas , Metabolómica , Serina/análisis , Serina/química
18.
Antimicrob Agents Chemother ; 65(7): e0245020, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972245

RESUMEN

Compared to other species of Candida yeasts, the growth of Candida glabrata is inhibited by many different strains of Saccharomyces killer yeasts. The ionophoric K1 and K2 killer toxins are broadly inhibitory to all clinical isolates of C. glabrata from patients with recurrent vulvovaginal candidiasis, despite high levels of resistance to clinically relevant antifungal therapeutics.


Asunto(s)
Candida glabrata , Candidiasis Vulvovaginal , Antifúngicos/farmacología , Candida glabrata/genética , Candidiasis Vulvovaginal/tratamiento farmacológico , Farmacorresistencia Fúngica/genética , Femenino , Humanos , Ionóforos , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética
19.
J Pharmacol Exp Ther ; 376(3): 410-427, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33384303

RESUMEN

Relationships between µ-opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynine are not fully established. We assessed in vitro binding affinity and efficacy and discriminative stimulus effects together with antinociception in rats. The binding affinities of mitragynine and 7-hydroxymitragynine at MOR (Ki values 77.9 and 709 nM, respectively) were higher than their binding affinities at κ-opioid receptor (KOR) or δ-opioid receptor (DOR). [35S]guanosine 5'-O-[γ-thio]triphosphate stimulation at MOR demonstrated that mitragynine was an antagonist, whereas 7-hydroxymitragynine was a partial agonist (Emax = 41.3%). In separate groups of rats discriminating either morphine (3.2 mg/kg) or mitragynine (32 mg/kg), mitragynine produced a maximum of 72.3% morphine-lever responding, and morphine produced a maximum of 65.4% mitragynine-lever responding. Other MOR agonists produced high percentages of drug-lever responding in the morphine and mitragynine discrimination assays: 7-hydroxymitragynine (99.7% and 98.1%, respectively), fentanyl (99.7% and 80.1%, respectively), buprenorphine (99.8% and 79.4%, respectively), and nalbuphine (99.4% and 98.3%, respectively). In the morphine and mitragynine discrimination assays, the KOR agonist U69,593 produced maximums of 72.3% and 22.3%, respectively, and the DOR agonist SNC 80 produced maximums of 34.3% and 23.0%, respectively. 7-Hydroxymitragynine produced antinociception; mitragynine did not. Naltrexone antagonized all of the effects of morphine and 7-hydroxymitragynine; naltrexone antagonized the discriminative stimulus effects of mitragynine but not its rate-decreasing effects. Mitragynine increased the potency of the morphine discrimination yet decreased morphine antinociception. Here we illustrate striking differences in MOR efficacy, with mitragynine having less than 7-hydroxymitragynine. SIGNIFICANCE STATEMENT: At human µ-opioid receptor (MOR) in vitro, mitragynine has low affinity and is an antagonist, whereas 7-hydroxymitragynine has 9-fold higher affinity than mitragynine and is an MOR partial agonist. In rats, intraperitoneal mitragynine exhibits a complex pharmacology including MOR agonism; 7-hydroxymitragynine has higher MOR potency and efficacy than mitragynine. These results are consistent with 7-hydroxymitragynine being a highly selective MOR agonist and with mitragynine having a complex pharmacology that combines low efficacy MOR agonism with activity at nonopioid receptors.


Asunto(s)
Conducta Animal/efectos de los fármacos , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides de Triptamina Secologanina/farmacología , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Células CHO , Cricetulus , Aprendizaje Discriminativo/efectos de los fármacos , Células HEK293 , Humanos , Unión Proteica , Ratas
20.
J Nat Prod ; 84(4): 1104-1112, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620222

RESUMEN

Kratom, Mitragyna speciosa Korth., is being widely consumed in the United States for pain management and the reduction of opioid withdrawal symptoms. The central nervous system (CNS) active alkaloids of kratom, including mitragynine, 7-hydroxymitragynine, and numerous additional compounds, are believed to derive their effects through opioid receptor activity. There is no literature describing the systemic exposure of many of these alkaloids after the consumption of kratom. Therefore, we have developed and validated a bioanalytical method for the simultaneous quantitation of 11 kratom alkaloids (mitragynine, 7-hydroxymitragynine, corynantheidine, speciogynine, speciociliatine, paynantheine, corynoxine, corynoxine-B, mitraphylline, ajmalicine, and isospeciofoline) in rat plasma. The validated method was used to analyze oral pharmacokinetic study samples of lyophilized kratom tea (LKT) and a marketed product, OPMS liquid shot, in rats. Among the 11 alkaloids, only mitragynine, 7-hydroxymitragynine, speciociliatine, and corynantheidine showed systemic exposure 8 h postdose, and the dose-normalized systemic exposure of these four alkaloids was higher (1.6-2.4-fold) following the administration of the commercial OPMS liquid. Paynantheine and speciogynine levels were quantifiable up to 1 h postdose, whereas none of the other alkaloids were detected. In summary, the method was successfully applied to quantify the exposure of individual kratom alkaloids after an oral dose of traditional or commercial products. This information will contribute to understanding the role of each alkaloid in the overall pharmacology of kratom and elucidating the pharmacokinetic differences between traditional and commercial kratom products.


Asunto(s)
Mitragyna/química , Preparaciones de Plantas/farmacocinética , Alcaloides de Triptamina Secologanina/farmacocinética , Alcaloides , Animales , Alcaloides Indólicos , Indoles , Masculino , Estructura Molecular , Oxindoles , Ratas , Ratas Sprague-Dawley , Compuestos de Espiro
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda