Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Pollut ; 136(1): 33-45, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15809106

RESUMEN

Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Gases/metabolismo , Oxidantes Fotoquímicos/toxicidad , Ozono/toxicidad , Hojas de la Planta/efectos de los fármacos , Estaciones del Año , Fraxinus/efectos de los fármacos , Fraxinus/metabolismo , Mimosa/efectos de los fármacos , Mimosa/metabolismo , Fotosíntesis/efectos de los fármacos , Populus/efectos de los fármacos , Populus/metabolismo , Especificidad de la Especie , Tiempo (Meteorología)
2.
New Phytol ; 137(3): 389-397, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33863074

RESUMEN

Cloned cuttings of Betula pendula Roth were grown in field fumigation chambers at Birmensdorf throughout one growing season in filtered air with either < 3 (control) or 90/40 nl l-1 O3 (day/night; ozone generated from pure oxygen). Each ozone regime was split into high and low soil nutrient regimes by watering plants with either a 0.05 % or a 0.005% solution of a fertilizer which contained macronutrients and micronutrients. Fertilization had a strong effect on plant growth, enzyme activities and the expression of ozone-induced effects at the biochemical level. The activities of PEPC and Rubisco were enhanced about threefold in the plants with high fertilization (HF). Significant effects of ozone were in most cases found only in the older leaves of the plants with low fertilization (LF), There, sucrose, glucose and fructose levels were enhanced. In both fertilization treatments, the number of starch granules along the minor veins was increased. These ozone effects point to a decreased or inhibited phloem loading. The increased PEPC activity and the enhanced malate levels in the ozone-exposed plants might be the result of a redirection of carbon flow from sucrose synthesis and translocation towards anapleurotic processes, which can feed detoxification and repair of ozone injury as indicated by enhanced respiration. These findings agree well with the observed effects of ozone in lowering the root: shoot biomass ratio. Although there was a marked reduction in the O3 /LF plants, O3 /HF plants showed no significant response. Inositol was decreased under ozone exposure in both fertilizer treatments, contrasting with the pattern for carbohydrates. These results demonstrate the role of fertilization as an important modifier of ozone-induced effects at the plant biochemical level. Well fertilized plants appear to cope better with the impact of ozone on metabolism.

3.
Tree Physiol ; 22(9): 613-23, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12069917

RESUMEN

To determine the relationship between phloem transport and changes in phloem water content, we measured temporal and spatial variations in water content and sucrose, glucose and fructose concentrations in phloem samples and phloem exudates of 70- and 30-year-old Norway spruce trees (Picea abies (L.) Karst.). Large temporal and spatial variations in phloem water content (1.4-2.6 mg mg(dw)(-1)) and phloem total sugar concentration (31-70 mg g(dw)(-1)) paralleled each other (r(2) = 0.83, P < 0.0001 for the temporal profile and r(2) = 0.96, P < 0.008 for the spatial profile), indicating that phloem water content depends on the total amount of sugar to be transferred. Changes in phloem water content were unrelated to changes in bark thickness. Maximum changes in phloem water content calculated from dendrometer readings were only 8-11% of the maximum measured changes in phloem water content, indicating that reversible changes in bark thickness did not reflect changes in internal water relations. We also studied the relationship between xylem sap velocity and changes in bark thickness in 70-year-old trees during summer 1999 and winter 1999-2000. Sap flow occurred sporadically throughout the winter, but there was no relationship between bark shrinkage or swelling and sap velocity. In winter, mean daily xylem sap velocity was significantly correlated with mean daily vapor pressure deficit and air temperature (P < 0.0001, in both cases). Changes in bark thickness corresponded with both short- and long-term changes in relative humidity, in both winter and summer. Under controlled conditions at > 0 degrees C, changes in relative humidity alone caused changes in thickness of boiled bark samples. Because living bark of Norway spruce trees contains large areas with crushed and dead sieve cell zones-up to 24% of the bark is air-filled space-we suggest that this space can compensate for volume changes in living phloem cells independently of total tissue water content. We conclude that changes in bark thickness are not indicative of changes in either phloem water capacitance or xylem sap flow.


Asunto(s)
Picea/fisiología , Corteza de la Planta/fisiología , Árboles/fisiología , Espacio Extracelular/fisiología , Fructosa/análisis , Glucosa/análisis , Picea/química , Corteza de la Planta/anatomía & histología , Corteza de la Planta/química , Tallos de la Planta/química , Tallos de la Planta/fisiología , Transpiración de Plantas/fisiología , Estaciones del Año , Sacarosa/análisis , Árboles/química , Agua/análisis , Agua/fisiología
4.
Environ Pollut ; 56(2): 155-67, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-15092485

RESUMEN

This study centres around the question of how far the analysis of spruce needles (Picea abies L.) provides a suitable tool for detecting and describing large-scale air pollution, primarily by heavy metals, in Switzerland. For that reason 1637 spruce shoots from 833 sites were analysed, relationships between the different elements were calculated and maps of their spatial distribution drawn. The results show that needle analysis is a valid instrument for the identification of various air pollutants in Switzerland. The element best suited is Pb, followed by some others like Mo, Fe, Cd or S. The most heavily polluted areas in Switzerland are the midlands, and in the north and north-west. Their spatial distribution suggests that in these areas the indicator elements are derived from local sources.

5.
Environ Pollut ; 109(3): 473-8, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15092880

RESUMEN

Current-year seedlings of beech, ash, Norway spruce and Scots pine were exposed during one growing season to different, but moderate, ozone (O(3)) scenarios representative for Switzerland (50, 85, 100% ambient, 50% ambient+30 nl l(-1)) in open-top chambers (OTCs) and to ambient O(3) concentrations in the field. Biomass significantly decreased with increasing O(3) dose in all species except for spruce. Losses of 25.5% (ash), 17.4% (beech), 9.9% (Scots pine) were found per 10 microl l(-1) h accumulated O(3) exposure over a threshold concentration of 40 nl l(-1) during daylight hours (AOT40). Ratios of root/shoot biomass (RSR) also significantly decreased with increasing AOT40 levels in beech and ash, but not in Norway spruce and Scots pine. The data show that the deciduous species beech and ash were more susceptible to O(3) with respect to RSR and biomass than the coniferous species Norway spruce and Scots pine.

6.
Environ Pollut ; 109(3): 501-7, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15092883

RESUMEN

This paper describes a relationship between ozone exposure, biomass, visual symptoms and a chlorophyll a fluorescence performance index for young beech trees (Fagus sylvatica). The plants were exposed to four levels of ozone in open-top fumigation chambers (50, 85, 100% of ambient, and 50% of ambient+30 nl l(-1) ozone) that fluctuated in parallel with ambient ozone during a single growing season. The trees were fumigated in the four treatments with ozone levels corresponding to an AOT40 (accumulated exposure above a threshold of 40 nl l(-1)) of 0.01, 3.35, 7.06 and 19.70 microl l(-1) h, respectively. Highly significant differences were found between the 50% of ambient+30 nl l(-1) ozone treatment and all other treatments, with a 70.5% reduction in primary photosynthetic performance, as measured with the PI index. The reduction of the PI values demonstrated a high correlation with visual symptom development (r(2)=0.98), and by the end of September with biomass loss (r(2)=0.99). A significant ozone exposure-response relationship was found between AOT40 and primary photochemistry (r(2)=0.97). Thus, analysis of PI provides an alternative method for regional monitoring of tree health within the context of the currently employed AOT40.

7.
Environ Pollut ; 81(3): 207-12, 1993.
Artículo en Inglés | MEDLINE | ID: mdl-15091806

RESUMEN

Seasonal growth was studied in potted cuttings of hybrid poplar (one clone of Populus x euramericana) either exposed to ozone in filtered air (0 = control, 0.05, 0.10 microl litre(-1)) or in ambient air (mean = 0.03 microl litre(-1)). Only at 0.10 microl litre(-1) was biomass production reduced and related to leaf loss rather than leaf formation, since the latter was similar in all treatments. Stem length at 0.10 microl litre(-1) approached that of the control, whereas starch concentration in the green stem bark tended to be reduced, as were the ratios of stem weight/length and root/shoot biomass. The changes in carbon allocation and biomass production gradually became established during the second half of the growing season. At the altered carbon allocation at 0.10 microl litre(-1), the ratio of whole-plant production/attached foliage area resembled that of the other O(3) regimes. However, the latter ratio was strongly reduced at 0.10 microl litre(-1) when calculated on the basis of the potential foliage area, as compensated for the O(3)-induced leaf loss. Thus the carbon return/cost balance of the totally formed foliage was low, although the relative-growth rate of ozonated plants temporarily reached that of the control. The relation between leaf differentiation under ozonation (lowered stomatal density) and whole-plant production remains uncertain. The plant behavior found is discussed in terms of passive response or acclimatization to O(3) stress.

8.
Environ Pollut ; 111(2): 321-31, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11202736

RESUMEN

Canton Ticino in southern Switzerland is exposed to some of the highest concentrations of tropospheric ozone in Europe. During recent field surveys in Canton Ticino, foliar symptoms identical to those caused by ozone have been documented on native tree and shrub species. In Europe, the critical ozone level for forest trees has been defined at an AOT40 of 10 ppm.h O3 (10 ppm.h accumulated exposure of ozone over a threshold of 40 ppb) during daylight hours over a six-month growing season. The objective of this study was to determine the amount of ambient ozone required to induce visible foliar symptoms on various forest plant species in southern Switzerland. Species were grown within eight open-top chambers and four open plots at the Vivaio Lattecaldo Cantonal Forest Nursery in Ticino, Switzerland. Species differed significantly in terms of the ppb.h exposures needed to cause visible symptoms. The most to least symptomatic species grown within open-plots in this study rank as Prunus serotina, Salix viminalis, Vibrnum lantana, Rhamnus cathartica, Betula pendula, Rumex obtusifolius, Sambucus racemosa, Morus nigra, Prunus avium, Fraxinus excelsior, Rhamnus frangula, Alnus viridis, Fagus sylvatica and Acer pseudoplatanus. Similar rankings were obtained in the non-filtered chamber plots. The ranking of species sensitivity closely follows AOT values for the occurrence of initial symptoms and symptom progression across the remainder of the exposure season. Species that first showed evidence of foliar injury also demonstrated the most sensitivity throughout the growing season, with symptoms rapidly advancing over ca. 25-30% of the total plant leaf surfaces by the end of the observation period. Conversely, those species that developed symptoms later in the season had far less total injury to plant foliage by the end of the observation period (1.5 to < 5% total leaf area injured). The current European ambient ozone standard may be insufficient to protect native plant species from visible foliar injury, and many more native species may be sensitive to ozone-induced foliar injury than are currently known.


Asunto(s)
Oxidantes Fotoquímicos/efectos adversos , Ozono/efectos adversos , Plantas , Monitoreo del Ambiente/métodos , Hojas de la Planta , Suiza , Árboles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda