Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ann Bot ; 134(1): 117-130, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38482916

RESUMEN

BACKGROUND AND AIMS: The timing of flowering onset is often correlated with latitude, indicative of climatic gradients. Flowering onset in temperate species commonly requires exposure to cold temperatures, known as vernalization. Hence, population differentiation of flowering onset with latitude might reflect adaptation to the local climatic conditions experienced by populations. METHODS: Within its western range, seeds from Linum bienne populations (the wild relative of cultivated Linum usitatissimum) were used to describe the latitudinal differentiation of flowering onset to determine its association with the local climate of the population. A vernalization experiment including different crop cultivars was used to determine how vernalization accelerates flowering onset, in addition to the vernalization sensitivity response among populations and cultivars. Additionally, genetic differentiation of L. bienne populations along the latitudinal range was scrutinized using microsatellite markers. KEY RESULTS: Flowering onset varied with latitude of origin, with southern populations flowering earlier than their northern counterparts. Vernalization reduced the number of days to flowering onset, but vernalization sensitivity was greater in northern populations compared with southern ones. Conversely, vernalization delayed flowering onset in the crop, exhibiting less variation in sensitivity. In L. bienne, both flowering onset and vernalization sensitivity were better predicted by the local climate of the population than by latitude itself. Microsatellite data unveiled genetic differentiation of populations, forming two groups geographically partitioned along latitude. CONCLUSIONS: The consistent finding of latitudinal variation across experiments suggests that both flowering onset and vernalization sensitivity in L. bienne populations are under genetic regulation and might depend on climatic cues at the place of origin. The association with climatic gradients along latitude suggests that the climate experienced locally drives population differentiation of the flowering onset and vernalization sensitivity patterns. The genetic population structure suggests that past population history could have influenced the flowering initiation patterns detected, which deserves further work.


Asunto(s)
Clima , Flores , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/genética , Frío , Repeticiones de Microsatélite/genética , Variación Genética , Geografía , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Vernalización
2.
Sci Data ; 11(1): 979, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244573

RESUMEN

In the last two decades, an exponentially growing number of meta-analyses (MAs) synthesize thousands of peer-reviewed studies on the environmental impacts of farming practices (FPs). This paper describes the iMAP-FP evidence library, a comprehensive dataset on the effects of 34 categories of FPs (such as agronomic practices, cropping and livestock systems, land management options and mitigation techniques) on 34 impacts including climate mitigation, soil health, environmental pollution, water use, nutrients cycling, biodiversity, and agricultural productivity. Through systematic screening, 570 MAs published since 2000 were selected and categorized according to the type of FP. We assessed their impacts, the geographic regions covered, and their quality. We extracted 3,811 effects and their statistical significance associated with sustainable FPs (intervention) compared to a control (typically conventional agriculture) across 223 different intervention-control pairs. Our dataset is accompanied with an online free-access library, which includes a catalogue of synthetic reports summarizing the available evidence on each evaluated FP.


Asunto(s)
Agricultura , Metaanálisis como Asunto , Conservación de los Recursos Naturales
3.
Appl Plant Sci ; 8(5): e11349, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32477845

RESUMEN

PREMISE: Nuclear microsatellite markers were developed for Linum bienne, the sister species of the crop L. usitatissimum, to provide molecular genetic tools for the investigation of L. bienne genetic diversity and structure. METHODS AND RESULTS: Fifty microsatellite loci were identified in L. bienne by means of genome skimming, and 44 loci successfully amplified. Of these, 16 loci evenly spread across the L. usitatissimum reference nuclear genome were used for genotyping six L. bienne populations. Excluding one monomorphic locus, the number of alleles per locus ranged from two to 12. Four out of six populations harbored private alleles. The levels of expected and observed heterozygosity were 0.076 to 0.667 and 0.000 to 1.000, respectively. All 16 loci successfully cross-amplified in L. usitatissimum. CONCLUSIONS: The 16 microsatellite loci developed here can be used for population genetic studies in L. bienne, and 28 additional loci that successfully amplified are available for further testing.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda