RESUMEN
BACKGROUND: The COVID-19 pandemic posed significant challenges to global health systems. Efficient public health responses required a rapid and secure collection of health data to improve the understanding of SARS-CoV-2 and examine the vaccine effectiveness (VE) and drug safety of the novel COVID-19 vaccines. OBJECTIVE: This study (COVID-19 study on vaccinated and unvaccinated subjects over 16 years; eCOV study) aims to (1) evaluate the real-world effectiveness of COVID-19 vaccines through a digital participatory surveillance tool and (2) assess the potential of self-reported data for monitoring key parameters of the COVID-19 pandemic in Germany. METHODS: Using a digital study web application, we collected self-reported data between May 1, 2021, and August 1, 2022, to assess VE, test positivity rates, COVID-19 incidence rates, and adverse events after COVID-19 vaccination. Our primary outcome measure was the VE of SARS-CoV-2 vaccines against laboratory-confirmed SARS-CoV-2 infection. The secondary outcome measures included VE against hospitalization and across different SARS-CoV-2 variants, adverse events after vaccination, and symptoms during infection. Logistic regression models adjusted for confounders were used to estimate VE 4 to 48 weeks after the primary vaccination series and after third-dose vaccination. Unvaccinated participants were compared with age- and gender-matched participants who had received 2 doses of BNT162b2 (Pfizer-BioNTech) and those who had received 3 doses of BNT162b2 and were not infected before the last vaccination. To assess the potential of self-reported digital data, the data were compared with official data from public health authorities. RESULTS: We enrolled 10,077 participants (aged ≥16 y) who contributed 44,786 tests and 5530 symptoms. In this young, primarily female, and digital-literate cohort, VE against infections of any severity waned from 91.2% (95% CI 70.4%-97.4%) at week 4 to 37.2% (95% CI 23.5%-48.5%) at week 48 after the second dose of BNT162b2. A third dose of BNT162b2 increased VE to 67.6% (95% CI 50.3%-78.8%) after 4 weeks. The low number of reported hospitalizations limited our ability to calculate VE against hospitalization. Adverse events after vaccination were consistent with previously published research. Seven-day incidences and test positivity rates reflected the course of the pandemic in Germany when compared with official numbers from the national infectious disease surveillance system. CONCLUSIONS: Our data indicate that COVID-19 vaccinations are safe and effective, and third-dose vaccinations partially restore protection against SARS-CoV-2 infection. The study showcased the successful use of a digital study web application for COVID-19 surveillance and continuous monitoring of VE in Germany, highlighting its potential to accelerate public health decision-making. Addressing biases in digital data collection is vital to ensure the accuracy and reliability of digital solutions as public health tools.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Alemania/epidemiología , COVID-19/prevención & control , COVID-19/epidemiología , Estudios Prospectivos , Vacunas contra la COVID-19/administración & dosificación , Femenino , Masculino , Persona de Mediana Edad , Adulto , SARS-CoV-2/inmunología , Pandemias , Eficacia de las Vacunas/estadística & datos numéricos , Anciano , Internet , Autoinforme , Adulto Joven , Estudios de Cohortes , AdolescenteRESUMEN
BACKGROUND: Mass gatherings (MGs) such as music festivals and sports events have been associated with a high risk of SARS-CoV-2 transmission. On-site research can foster knowledge of risk factors for infections and improve risk assessments and precautionary measures at future MGs. We tested a web-based participatory disease surveillance tool to detect COVID-19 infections at and after an outdoor MG by collecting self-reported COVID-19 symptoms and tests. METHODS: We conducted a digital prospective observational cohort study among fully immunized attendees of a sports festival that took place from September 2 to 5, 2021 in Saxony-Anhalt, Germany. Participants used our study app to report demographic data, COVID-19 tests, symptoms, and their contact behavior. This self-reported data was used to define probable and confirmed COVID-19 cases for the full "study period" (08/12/2021 - 10/31/2021) and within the 14-day "surveillance period" during and after the MG, with the highest likelihood of an MG-related COVID-19 outbreak (09/04/2021 - 09/17/2021). RESULTS: A total of 2,808 of 9,242 (30.4%) event attendees participated in the study. Within the study period, 776 individual symptoms and 5,255 COVID-19 tests were reported. During the 14-day surveillance period around and after the MG, seven probable and seven PCR-confirmed COVID-19 cases were detected. The confirmed cases translated to an estimated seven-day incidence of 125 per 100,000 participants (95% CI [67.7/100,000, 223/100,000]), which was comparable to the average age-matched incidence in Germany during this time. Overall, weekly numbers of COVID-19 cases were fluctuating over the study period, with another increase at the end of the study period. CONCLUSION: COVID-19 cases attributable to the mass gathering were comparable to the Germany-wide age-matched incidence, implicating that our active participatory disease surveillance tool was able to detect MG-related infections. Further studies are needed to evaluate and apply our participatory disease surveillance tool in other mass gathering settings.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Estudios Prospectivos , Reuniones Masivas , Alemania/epidemiologíaRESUMEN
BACKGROUND: Despite its importance to women's reproductive health and its impact on women's daily lives, the menstrual cycle, its regulation, and its impact on health remain poorly understood. As conventional clinical trials rely on infrequent in-person assessments, digital studies with wearable devices enable the collection of longitudinal subjective and objective measures. OBJECTIVE: The study aims to explore the technical feasibility of collecting combined wearable and digital questionnaire data and its potential for gaining biological insights into the menstrual cycle. METHODS: This prospective observational cohort study was conducted online over 12 weeks. A total of 42 cisgender women were recruited by their local gynecologist in Berlin, Germany, and given a Fitbit Inspire 2 device and access to a study app with digital questionnaires. Statistical analysis included descriptive statistics on user behavior and retention, as well as a comparative analysis of symptoms from the digital questionnaires with metrics from the sensor devices at different phases of the menstrual cycle. RESULTS: The average time spent in the study was 63.3 (SD 33.0) days with 9 of the 42 individuals dropping out within 2 weeks of the start of the study. We collected partial data from 114 ovulatory cycles, encompassing 33 participants, and obtained complete data from a total of 50 cycles. Participants reported a total of 2468 symptoms in the daily questionnaires administered during the luteal phase and menses. Despite difficulties with data completeness, the combined questionnaire and sensor data collection was technically feasible and provided interesting biological insights. We observed an increased heart rate in the mid and end luteal phase compared with menses and participants with severe premenstrual syndrome walked substantially fewer steps (average daily steps 10,283, SD 6277) during the luteal phase and menses compared with participants with no or low premenstrual syndrome (mean 11,694, SD 6458). CONCLUSIONS: We demonstrate the feasibility of using an app-based approach to collect combined wearable device and questionnaire data on menstrual cycles. Dropouts in the early weeks of the study indicated that engagement efforts would need to be improved for larger studies. Despite the challenges of collecting wearable data on consecutive days, the data collected provided valuable biological insights, suggesting that the use of questionnaires in conjunction with wearable data may provide a more complete understanding of the menstrual cycle and its impact on daily life. The biological findings should motivate further research into understanding the relationship between the menstrual cycle and objective physiological measurements from sensor devices.
Asunto(s)
Ciclo Menstrual , Síndrome Premenstrual , Humanos , Femenino , Estudios de Factibilidad , Estudios Prospectivos , Monitores de EjercicioRESUMEN
Alzheimer's disease (AD) is the most common cause of dementia with advancing age as its strongest risk factor. AD neuropathologic change (ADNC) is known to be associated with numerous DNA methylation changes in the human brain, but the oldest old (> 90 years) have so far been underrepresented in epigenetic studies of ADNC. Our study participants were individuals aged over 90 years (n = 47) from The 90+ Study. We analyzed DNA methylation from bulk samples in eight precisely dissected regions of the human brain: middle frontal gyrus, cingulate gyrus, entorhinal cortex, dentate gyrus, CA1, substantia nigra, locus coeruleus and cerebellar cortex. We deconvolved our bulk data into cell-type-specific (CTS) signals using computational methods. CTS methylation differences were analyzed across different levels of ADNC. The highest amount of ADNC related methylation differences was found in the dentate gyrus, a region that has so far been underrepresented in large scale multi-omic studies. In neurons of the dentate gyrus, DNA methylation significantly differed with increased burden of amyloid beta (Aß) plaques at 5897 promoter regions of protein-coding genes. Amongst these, higher Aß plaque burden was associated with promoter hypomethylation of the Presenilin enhancer 2 (PEN-2) gene, one of the rate limiting genes in the formation of gamma-secretase, a multicomponent complex that is responsible in part for the endoproteolytic cleavage of amyloid precursor protein into Aß peptides. In addition to novel ADNC related DNA methylation changes, we present the most detailed array-based methylation survey of the old aged human brain to date. Our open-sourced dataset can serve as a brain region reference panel for future studies and help advance research in aging and neurodegenerative diseases.