Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Immunity ; 57(8): 1878-1892.e5, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39043185

RESUMEN

Lung-tissue-resident memory (TRM) CD8+ T cells are critical for heterosubtypic immunity against influenza virus (IAV) reinfection. How TRM cells surveil the lung, respond to infection, and interact with other cells remains unresolved. Here, we used IAV infection of mice in combination with intravital and static imaging to define the spatiotemporal dynamics of lung TRM cells before and after recall infection. CD69+CD103+ TRM cells preferentially localized to lung sites of prior IAV infection, where they exhibited patrolling behavior. After rechallenge, lung TRM cells formed tight clusters in an antigen-dependent manner. Transcriptomic analysis of IAV-specific TRM cells revealed the expression of several factors that regulate myeloid cell biology. In vivo rechallenge experiments demonstrated that protection elicited by TRM cells is orchestrated in part by interferon (IFN)-γ-mediated recruitment of inflammatory monocytes into the lungs. Overall, these data illustrate the dynamic landscapes of CD103+ lung TRM cells that mediate early protective immunity against IAV infection.


Asunto(s)
Antígenos CD , Linfocitos T CD8-positivos , Memoria Inmunológica , Virus de la Influenza A , Cadenas alfa de Integrinas , Pulmón , Células T de Memoria , Infecciones por Orthomyxoviridae , Animales , Pulmón/inmunología , Pulmón/virología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Memoria Inmunológica/inmunología , Cadenas alfa de Integrinas/metabolismo , Virus de la Influenza A/inmunología , Antígenos CD/metabolismo , Células T de Memoria/inmunología , Ratones Endogámicos C57BL , Interferón gamma/metabolismo , Interferón gamma/inmunología , Microscopía Intravital , Monocitos/inmunología
2.
Nat Immunol ; 20(8): 1035-1045, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31235953

RESUMEN

Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Virus de la Influenza A/inmunología , Interferón gamma/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Interferón/inmunología , Animales , Línea Celular , Perros , Femenino , Inmunidad Innata/inmunología , Interleucina-10/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interferón/genética , Receptor de Interferón gamma
3.
Immunity ; 54(4): 687-701.e4, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33773107

RESUMEN

Interferon-γ (IFN-γ)-producing CD4+ T helper-1 (Th1) cells are critical for protection from microbes that infect the phagosomes of myeloid cells. Current understanding of Th1 cell differentiation is based largely on reductionist cell culture experiments. We assessed Th1 cell generation in vivo by studying antigen-specific CD4+ T cells during infection with the phagosomal pathogen Salmonella enterica (Se), or influenza A virus (IAV), for which CD4+ T cells are less important. Both microbes induced T follicular helper (Tfh) and interleukin-12 (IL-12)-independent Th1 cells. During Se infection, however, the Th1 cells subsequently outgrew the Tfh cells via an IL-12-dependent process and formed subsets with increased IFN-γ production, ZEB2-transcription factor-dependent cytotoxicity, and capacity to control Se infection. Our results indicate that many infections induce a module that generates Tfh and poorly differentiated Th1 cells, which is followed in phagosomal infections by an IL-12-dependent Th1 cell amplification module that is critical for pathogen control.


Asunto(s)
Diferenciación Celular/inmunología , Células TH1/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Drosophila/inmunología , Femenino , Interferón gamma/inmunología , Interleucina-12/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología
4.
Proc Natl Acad Sci U S A ; 121(31): e2320303121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39008691

RESUMEN

Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.


Asunto(s)
Células Epiteliales , Gripe Humana , Tropismo Viral , Replicación Viral , Humanos , Gripe Humana/virología , Replicación Viral/fisiología , Células Epiteliales/virología , Células Epiteliales/metabolismo , Cilios/virología , Cilios/metabolismo , Células Cultivadas , Mucosa Respiratoria/virología , Mucosa Respiratoria/citología
5.
J Immunol ; 212(11): 1621-1625, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619284

RESUMEN

Humans experience frequent respiratory infections. Immunology and vaccinology studies in mice are typically performed in naive specific pathogen-free animals responding to their very first respiratory challenge. We found that the first respiratory infection induces lifelong enlargement of the lung-draining mediastinal lymph nodes (medLNs). Furthermore, infection-experienced medLNs supported better naive T cell surveillance and effector responses to new unrelated infections that exhibited more biased accumulation and memory establishment within the lung. Moreover, we observed that weight loss induced by influenza infection was substantially reduced in mice that had recovered from a previous unrelated respiratory viral challenge. These data show that the lack of infectious history and corresponding medLN hypoplasia in specific pathogen-free mice alter their immune response to lung infections. Preclinical vaccination and immunology studies should consider the previous infectious experience of the model organism.


Asunto(s)
Pulmón , Ganglios Linfáticos , Infecciones por Orthomyxoviridae , Animales , Ratones , Ganglios Linfáticos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Pulmón/inmunología , Pulmón/virología , Pulmón/patología , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Linfocitos T/inmunología , Memoria Inmunológica/inmunología , Mediastino , Infecciones del Sistema Respiratorio/inmunología
6.
J Virol ; 96(9): e0035222, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35446142

RESUMEN

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Asunto(s)
Enteritis , Virus de la Influenza A , Intestino Delgado , Infecciones por Orthomyxoviridae , Animales , Enteritis/inmunología , Enteritis/fisiopatología , Enteritis/virología , Humanos , Inmunidad Innata , Virus de la Influenza A/inmunología , Intestino Delgado/citología , Intestino Delgado/virología , Linfocitos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Orthomyxoviridae/virología
7.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507952

RESUMEN

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Tropismo Viral , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/genética , Epitelio/inmunología , Epitelio/virología , Humanos , Interferones/genética , Interferones/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Tropismo Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
J Immunol ; 207(2): 376-379, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193597

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Memoria Inmunológica/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/inmunología , Vacunación , Células Vero
9.
J Immunol ; 206(5): 931-935, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441437

RESUMEN

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/inmunología , Antígeno HLA-A2/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Proc Natl Acad Sci U S A ; 117(32): 19399-19407, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719124

RESUMEN

The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Epítopos/inmunología , Epítopos/metabolismo , Animales , Línea Celular , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Antígenos de Histocompatibilidad Clase I/metabolismo , Cinética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Péptidos/metabolismo , Señales de Clasificación de Proteína/genética
11.
J Gen Virol ; 103(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737518

RESUMEN

Animal models are a critical tool in modern biology. To increase reproducibility and to reduce confounding variables modern animal models exclude many microbes, including key natural commensals and pathogens. Here we discuss recent strategies to incorporate a natural microbiota to laboratory mouse models and the impacts the microbiota has on immune responses, with a focus on viruses.


Asunto(s)
Microbiota , Virus , Animales , Modelos Animales de Enfermedad , Ratones , Reproducibilidad de los Resultados , Simbiosis , Virus/genética
12.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658346

RESUMEN

Influenza A virus (IAV) is a segmented negative-sense RNA virus and is the cause of major epidemics and pandemics. The replication of IAV is complex, involving the production of three distinct RNA species; mRNA, cRNA, and vRNA for all eight genome segments. While understanding IAV replication kinetics is important for drug development and improving vaccine production, current methods for studying IAV kinetics has been limited by the ability to detect all three different RNA species in a scalable manner. Here we report the development of a novel pipeline using total stranded RNA-Seq, which we named Influenza Virus Enumerator of RNA Transcripts (InVERT), that allows for the simultaneous quantification of all three RNA species produced by IAV. Using InVERT, we provide a full landscape of the IAV replication kinetics and found that different groups of viral genes follow different kinetics. The segments coding for RNA-dependent RNA Polymerase (RdRP) produced more vRNA than mRNA while some other segments (NP, NS, HA) consistently made more mRNA than vRNA. vRNA expression levels did not correlate with cRNA expression, suggesting complex regulation of vRNA synthesis. Furthermore, by studying the kinetics of a virus lacking the capacity to generate new polymerase complexes, we found evidence that further supports the model that cRNA synthesis requires newly synthesized RdRP and that incoming RdRP can only generate mRNA. Overall, InVERT is a powerful tool for quantifying IAV RNA species to elucidate key features of IAV replication.ImportanceInfluenza A virus (IAV) is a respiratory pathogen that has caused significant mortality throughout history and remains a global threat to human health. Although much is known about IAV replication, the regulation of IAV replication dynamics is not completely understood. This is due in part to both technical limitations and the complexity of the virus replication, which has a segmented genome and produces three distinct RNA species for each gene segment. We developed a new approach that allows the methodical study of IAV replication kinetics, shedding light on many interesting features of IAV replication biology. This study advances our understanding of the kinetics of IAV replication and will help to facilitate future research in the field.

13.
PLoS Pathog ; 16(8): e1008760, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32790753

RESUMEN

Influenza A viruses (IAVs) remain a significant global health burden. Activation of the innate immune response is important for controlling early virus replication and spread. It is unclear how early IAV replication events contribute to immune detection. Additionally, while many cell types in the lung can be infected, it is not known if all cell types contribute equally to establish the antiviral state in the host. Here, we use single-cycle influenza A viruses (scIAVs) to characterize the early immune response to IAV in vitro and in vivo. We found that the magnitude of virus replication contributes to antiviral gene expression within infected cells prior to the induction of a global response. We also developed a scIAV that is only capable of undergoing primary transcription, the earliest stage of virus replication. Using this tool, we uncovered replication stage-specific responses in vitro and in vivo. Using several innate immune receptor knockout cell lines, we identify RIG-I as the predominant antiviral detector of primary virus transcription and amplified replication in vitro. Through a Cre-inducible reporter mouse, we used scIAVs expressing Cre-recombinase to characterize cell type-specific responses in vivo. Individual cell types upregulate unique sets of antiviral genes in response to both primary virus transcription and amplified replication. We also identified antiviral genes that are only upregulated in response to direct infection. Altogether, these data offer insight into the early mechanisms of antiviral gene activation during influenza A infection.


Asunto(s)
Células Epiteliales/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Replicación Viral , Células A549 , Animales , Antivirales/farmacología , Proteína 58 DEAD Box/metabolismo , Perros , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/tratamiento farmacológico , Gripe Humana/patología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Receptores Inmunológicos
14.
J Infect Dis ; 223(8): 1339-1344, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33476387

RESUMEN

Coronavirus disease 2019 (COVID-19) outcomes are linked to host immune responses and may be affected by antiviral therapy. We investigated antibody and cytokine responses in ACTT-1 study participants enrolled at our center. We studied serum specimens from 19 hospitalized adults with COVID-19 randomized to treatment with remdesivir or placebo. We assessed severe acute respiratory syndrome coronavirus 2 antibody responses and identified cytokine signatures, using hierarchical clustering. We identified no clear immunologic trends attributable to remdesivir treatment. Seven participants were initially seronegative at study enrollment, and all 4 deaths occurred in this group with more recent symptom onset. We identified 3 dominant cytokine signatures, demonstrating different disease trajectories.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Inmunidad/inmunología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/inmunología , Adenosina Monofosfato/uso terapéutico , Adulto , Alanina/análogos & derivados , Alanina/inmunología , Alanina/uso terapéutico , Anticuerpos Antivirales/inmunología , Antivirales/inmunología , Antivirales/uso terapéutico , COVID-19/virología , Citocinas/inmunología , Femenino , Humanos , Inmunidad/efectos de los fármacos , Masculino , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Tratamiento Farmacológico de COVID-19
15.
PLoS Pathog ; 15(9): e1008077, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31557273

RESUMEN

Influenza A virus (IAV) is a seasonal pathogen with the potential to cause devastating pandemics. IAV infects multiple epithelial cell subsets in the respiratory tract, eliciting damage to the lungs. Clearance of IAV is primarily dependent on CD8+ T cells, which must balance control of the infection with immunopathology. Using a virus expressing Cre recombinase to permanently label infected cells in a Cre-inducible reporter mouse, we previously discovered infected club cells that survive both lytic virus replication and CD8+ T cell-mediated clearance. In this study, we demonstrate that ciliated epithelial cells, type I and type II alveolar cells can also become survivor cells. Survivor cells are stable in the lung long-term and demonstrate enhanced proliferation compared to uninfected cells. When we investigated how survivor cells evade CD8+ T cell killing we observed that survivor cells upregulated the inhibitory ligand PD-L1, but survivor cells did not use PD-L1 to evade CD8+ T cell killing. Instead our data suggest that survivor cells are not inherently resistant to CD8+ T cell killing, but instead no longer present IAV antigen and cannot be detected by CD8+ T cells. Finally, we evaluate the failure of CD8+ T cells to kill these previously infected cells. This work demonstrates that additional cell types can survive IAV infection and that these cells robustly proliferate and are stable long term. By sparing previously infected cells, the adaptive immune system may be minimizing pathology associated with IAV infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Evasión Inmune , Gripe Humana/inmunología , Gripe Humana/virología , Inmunidad Adaptativa , Animales , Antígeno B7-H1/inmunología , Proliferación Celular , Supervivencia Celular/inmunología , Citotoxicidad Inmunológica , Humanos , Inmunidad Celular , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Gripe Humana/patología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/inmunología
16.
Transfusion ; 61(1): 17-23, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32935872

RESUMEN

BACKGROUND: The transfer of passive immunity with convalescent plasma is a promising strategy for treatment and prevention of COVID-19, but donors with a history of nonsevere disease are serologically heterogenous. The relationship between SARS-Cov-2 antigen-binding activity and neutralization activity in this population of donors has not been defined. STUDY DESIGN AND METHODS: Convalescent plasma units from 47 individuals with a history of nonsevere COVID-19 were assessed for antigen-binding activity of using three clinical diagnostic serology assays (Beckman, DiaSorin, and Roche) with different SARS-CoV-2 targets. These results were compared with functional neutralization activity using a fluorescent reporter strain of SARS-CoV-2 in a microwell assay. RESULTS: Positive correlations of varying strength (Spearman r = 0.37-0.52) between antigen binding and viral neutralization were identified. Donors age 48 to 75 years had the highest neutralization activity. Units in the highest tertile of binding activity for each assay were enriched (75%-82%) for those with the highest levels of neutralization. CONCLUSION: The strength of the relationship between antigen-binding activity and neutralization varies depending on the clinical assay used. Units in the highest tertile of binding activity for each assay are predominantly comprised of those with the greatest neutralization activity.


Asunto(s)
SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/terapia , Prueba Serológica para COVID-19 , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunización Pasiva , Inmunoglobulina G/inmunología , SARS-CoV-2/patogenicidad , Pruebas Serológicas , Sueroterapia para COVID-19
17.
J Immunol ; 202(9): 2535-2545, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30858199

RESUMEN

Naive CD4+ T lymphocytes differentiate into various Th cell subsets following TCR binding to microbial peptide:MHC class II (p:MHCII) complexes on dendritic cells (DCs). The affinity of the TCR interaction with p:MHCII plays a role in Th differentiation by mechanisms that are not completely understood. We found that low-affinity TCRs biased mouse naive T cells to become T follicular helper (Tfh) cells, whereas higher-affinity TCRs promoted the formation of Th1 or Th17 cells. We explored the basis for this phenomenon by focusing on IL-2R signaling, which is known to promote Th1 and suppress Tfh cell differentiation. SIRP⍺+ DCs produce abundant p:MHCII complexes and consume IL-2, whereas XCR1+ DCs weakly produce p:MHCII but do not consume IL-2. We found no evidence, however, of preferential interactions between Th1 cell-prone, high-affinity T cells and XCR1+ DCs or Tfh cell-prone, low-affinity T cells and SIRP⍺+ DCs postinfection with bacteria expressing the peptide of interest. Rather, high-affinity T cells sustained IL-2R expression longer and expressed two novel Th cell differentiation regulators, Eef1e1 and Gbp2, to a higher level than low-affinity T cells. These results suggest that TCR affinity does not influence Th cell differentiation by biasing T cell interactions with IL-2-consuming DCs, but instead, directly regulates genes in naive T cells that control the differentiation process.


Asunto(s)
Diferenciación Celular/inmunología , Proteínas de Unión al GTP/inmunología , Regulación de la Expresión Génica/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Factores de Elongación de Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular/genética , Células Dendríticas/citología , Células Dendríticas/inmunología , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica/genética , Subunidad alfa del Receptor de Interleucina-2/genética , Ratones , Ratones Noqueados , Factores de Elongación de Péptidos/genética , Receptores de Antígenos de Linfocitos T/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Células TH1/citología , Células Th2/citología
18.
J Immunol ; 203(4): 936-945, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235552

RESUMEN

Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.


Asunto(s)
Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
19.
Proc Natl Acad Sci U S A ; 115(38): 9610-9615, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181264

RESUMEN

Influenza virus has a broad cellular tropism in the respiratory tract. Infected epithelial cells sense the infection and initiate an antiviral response. To define the antiviral response at the earliest stages of infection we used a series of single-cycle reporter viruses. These viral probes demonstrated cells in vivo harbor a range in magnitude of virus replication. Transcriptional profiling of cells supporting different levels of replication revealed tiers of IFN-stimulated gene expression. Uninfected cells and cells with blunted replication expressed a distinct and potentially protective antiviral signature, while cells with high replication expressed a unique reserve set of antiviral genes. Finally, we used these single-cycle reporter viruses to determine the antiviral landscape during virus spread, which unveiled disparate protection of epithelial cell subsets mediated by IFN in vivo. Together these results highlight the complexity of virus-host interactions within the infected lung and suggest that magnitude and round of replication tune the antiviral response.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Virus de la Influenza A/fisiología , Gripe Humana/virología , Pulmón/virología , Replicación Viral/inmunología , Animales , Perros , Células Epiteliales/inmunología , Células Epiteliales/virología , Perfilación de la Expresión Génica/métodos , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/patología , Interferones/inmunología , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN
20.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282710

RESUMEN

Influenza A virus (IAV) remains a global health concern despite the availability of a seasonal vaccine. It is difficult to predict which strains will circulate during influenza season, and therefore, it is extremely challenging to test novel vaccines in the human population. To overcome this obstacle, new vaccines must be tested in challenge studies. This approach poses significant safety problems, since current pharmacological interventions for IAV are poorly efficacious. New methods are needed to enhance the safety of these challenge studies. In this study, we have generated a virus expressing a small-molecule-assisted shutoff (SMASh) tag as a safety switch for IAV replication. The addition of the SMASh tag to an essential IAV protein allows for small-molecule-mediated inhibition of replication. Treatment with this drug controls the replication of a SMASh-tagged virus in vitro and in vivo This model for restriction of viral replication has potential for broad applications in vaccine studies, virotherapy, and basic virus research.IMPORTANCE Influenza A virus (IAV) causes significant morbidity and mortality annually worldwide, despite the availability of new formulations of the vaccine each season. There is a critical need to develop more-efficacious vaccines. However, testing novel vaccines in the human population in controlled studies is difficult due to the limited availability and efficacy of intervention strategies should the vaccine fail. There are also significant safety concerns for work with highly pathogenic IAV strains in the laboratory. Therefore, novel strategies are needed to improve the safety of vaccine studies and of research on highly pathogenic IAV. In this study, we developed an IAV strain engineered to contain a small-molecule-mediated safety switch. This tag, when attached to an essential viral protein, allows for the regulation of IAV replication in vitro and in vivo This strategy provides a platform for the regulation of virus replication without targeting viral proteins directly.


Asunto(s)
Virus de la Influenza A/fisiología , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Células A549 , Animales , Antivirales/farmacología , Perros , Células HEK293 , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Isoquinolinas/farmacología , Células de Riñón Canino Madin Darby , Oseltamivir/farmacología , Proteínas Recombinantes de Fusión/genética , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda