Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Am J Respir Crit Care Med ; 209(5): 497-506, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991900

RESUMEN

This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or "NICE-SUGAR," trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest "TGC-fast" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care.


Asunto(s)
Hiperglucemia , Hipoglucemia , Humanos , Control Glucémico , Glucemia , Insulina/uso terapéutico , Glucosa , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Unidades de Cuidados Intensivos
2.
Crit Care ; 27(1): 251, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365667

RESUMEN

BACKGROUND: Withholding parenteral nutrition (PN) until one week after PICU admission facilitated recovery from critical illness and protected against emotional and behavioral problems 4 years later. However, the intervention increased the risk of hypoglycemia, which may have counteracted part of the benefit. Previously, hypoglycemia occurring under tight glucose control in critically ill children receiving early PN did not associate with long-term harm. We investigated whether hypoglycemia in PICU differentially associates with outcome in the context of withholding early PN, and whether any potential association with outcome may depend on the applied glucose control protocol. METHODS: In this secondary analysis of the multicenter PEPaNIC RCT, we studied whether hypoglycemia in PICU associated with mortality (N = 1440) and 4-years neurodevelopmental outcome (N = 674) through univariable comparison and multivariable regression analyses adjusting for potential confounders. In patients with available blood samples (N = 556), multivariable models were additionally adjusted for baseline serum NSE and S100B concentrations as biomarkers of neuronal, respectively, astrocytic damage. To study whether an association of hypoglycemia with outcome may be affected by the nutritional strategy or center-specific glucose control protocol, we further adjusted the models for the interaction between hypoglycemia and the randomized nutritional strategy, respectively, treatment center. In sensitivity analyses, we studied whether any association with outcome was different in patients with iatrogenic or spontaneous/recurrent hypoglycemia. RESULTS: Hypoglycemia univariably associated with higher mortality in PICU, at 90 days and 4 years after randomization, but not when adjusted for risk factors. After 4 years, critically ill children with hypoglycemia scored significantly worse for certain parent/caregiver-reported executive functions (working memory, planning and organization, metacognition) than patients without hypoglycemia, also when adjusted for risk factors including baseline NSE and S100B. Further adjustment for the interaction of hypoglycemia with the randomized intervention or treatment center revealed a potential interaction, whereby tight glucose control and withholding early PN may be protective. Impaired executive functions were most pronounced in patients with spontaneous or recurrent hypoglycemia. CONCLUSION: Critically ill children exposed to hypoglycemia in PICU were at higher risk of impaired executive functions after 4 years, especially in cases of spontaneous/recurrent hypoglycemia.


Asunto(s)
Glucemia , Hipoglucemia , Niño , Humanos , Glucemia/análisis , Control Glucémico , Enfermedad Crítica/terapia , Unidades de Cuidado Intensivo Pediátrico
3.
Clin Sci (Lond) ; 136(11): 861-878, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35642779

RESUMEN

Sepsis is defined as any life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains an important cause of critical illness and has considerable short- and long-term morbidity and mortality. In the last decades, preclinical and clinical research has revealed a biphasic pattern in the (neuro-)endocrine responses to sepsis as to other forms of critical illness, contributing to development of severe metabolic alterations. Immediately after the critical illness-inducing insult, fasting- and stress-induced neuroendocrine and cellular responses evoke a catabolic state in order to provide energy substrates for vital tissues, and to concomitantly activate cellular repair pathways while energy-consuming anabolism is postponed. Large randomized controlled trials have shown that providing early full feeding in this acute phase induced harm and reversed some of the neuro-endocrine alterations, which suggested that the acute fasting- and stress-induced responses to critical illness are likely interlinked and benefical. However, it remains unclear whether, in the context of accepting virtual fasting in the acute phase of illness, metabolic alterations such as hyperglycemia are harmful or beneficial. When patients enter a prolonged phase of critical illness, a central suppression of most neuroendocrine axes follows. Prolonged fasting and central neuroendocrine suppression may no longer be beneficial. Although pilot studies have suggested benefit of fasting-mimicking diets and interventions that reactivate the central neuroendocrine suppression selectively in the prolonged phase of illness, further study is needed to investigate patient-oriented outcomes in larger randomized trials.


Asunto(s)
Hiperglucemia , Sepsis , Enfermedad Crítica , Humanos , Redes y Vías Metabólicas , Sistemas Neurosecretores
4.
Curr Opin Crit Care ; 27(4): 385-389, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33967210

RESUMEN

PURPOSE OF REVIEW: To summarize the clinical evidence for beneficial effects of ketones, ketogenic diets and intermittent fasting in critical illness, and to review potential mechanisms behind such effects. RECENT FINDINGS: Recent evidence demonstrates that activation of a metabolic fasting response may be beneficial to recover from critical insults. Potential protective mechanisms are, among others, activation of ketogenesis and of damage removal by autophagy. Novel feeding strategies, including ketone supplements, ketogenic diets and intermittent fasting regimens, can activate these pathways - at least partially - in critically ill patients. Randomized controlled trials (RCTs) studying these novel feeding strategies as compared with standard care, are scarce and have not shown consistent benefit. Yet, all RCTs were small and underpowered for clinical endpoints. Moreover, in intermittent fasting studies, the duration of the fasting interval may have been too short to develop a sustained metabolic fasting response. SUMMARY: These findings open perspectives for the further development of fasting-mimicking diets. Ultimately, clinical benefit should be confirmed by RCTs that are adequately powered for clinically relevant, patient-centered endpoints.


Asunto(s)
Dieta Cetogénica , Ayuno , Enfermedad Crítica , Humanos , Unidades de Cuidados Intensivos , Cetonas
5.
Crit Care ; 25(1): 373, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696774

RESUMEN

BACKGROUND: Recent evidence suggests a potentially protective effect of increasing ketone body availability via accepting low macronutrient intake early after onset of critical illness. The impact of blood glucose control with insulin on circulating ketones is unclear. Whereas lowering blood glucose may activate ketogenesis, high insulin concentrations may have the opposite effect. We hypothesized that the previously reported protective effects of tight glucose control in critically ill patients receiving early parenteral nutrition may have been mediated in part by activation of ketogenesis. METHODS: This is a secondary analysis of 3 randomized controlled trials on tight versus liberal blood glucose control in the intensive care unit, including 700 critically ill children and 2748 critically ill adults. All patients received early parenteral nutrition as part of the contemporary standard of care. Before studying a potential mediator role of circulating ketones in improving outcome, we performed a time course analysis to investigate whether tight glucose control significantly affected ketogenesis and to identify a day of maximal effect, if any. We quantified plasma/serum 3-hydroxybutyrate concentrations from intensive care unit admission until day 3 in 2 matched subsets of 100 critically ill children and 100 critically ill adults. Univariable differences between groups were investigated by Kruskal-Wallis test. Differences in 3-hydroxybutyrate concentrations between study days were investigated by Wilcoxon signed-rank test. RESULTS: In critically ill children and adults receiving early parenteral nutrition, tight glucose control, as compared with liberal glucose control, lowered mean morning blood glucose on days 1-3 (P < 0.0001) via infusing insulin at a higher dose (P < 0.0001). Throughout the study period, caloric intake was not different between groups. In both children and adults, tight glucose control did not affect 3-hydroxybutyrate concentrations, which were suppressed on ICU days 1-3 and significantly lower than the ICU admission values for both groups (P < 0.0001). CONCLUSION: Tight versus liberal glucose control in the context of early parenteral nutrition did not affect 3-hydroxybutyrate concentrations in critically ill patients. Hence, the protective effects of tight glucose control in this context cannot be attributed to increased ketone body availability.


Asunto(s)
Ácido 3-Hidroxibutírico , Enfermedad Crítica , Control Glucémico , Ácido 3-Hidroxibutírico/sangre , Adulto , Niño , Control Glucémico/estadística & datos numéricos , Humanos , Insulinas/administración & dosificación
6.
Crit Care ; 25(1): 65, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593393

RESUMEN

BACKGROUND: Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation. We further hypothesized that, in this constellation, POMC leaches into the circulation and can contribute to adrenocortical steroidogenesis. METHODS: In two human studies of acute (ICU admission to day 7, N = 71) and prolonged (from ICU day 7 until recovery; N = 65) sepsis-induced critical illness, POMC plasma concentrations were quantified in relation to plasma ACTH and cortisol. In a mouse study of acute (1 day), subacute (3 and 5 days) and prolonged (7 days) fluid-resuscitated, antibiotic-treated sepsis (N = 123), we further documented alterations in hypothalamic CRH and AVP, plasma and pituitary POMC and its glucocorticoid-receptor-regulated processing into ACTH, as well as adrenal cortex integrity and steroidogenesis markers. RESULTS: The two human studies revealed several-fold elevated plasma concentrations of the ACTH precursor POMC from the acute to the prolonged phase of sepsis and upon recovery (all p < 0.0001), coinciding with the known ACTH-cortisol dissociation. Elevated plasma POMC and ACTH-corticosterone dissociation were confirmed in the mouse model. In mice, sepsis acutely increased hypothalamic mRNA of CRH (p = 0.04) and AVP (p = 0.03) which subsequently normalized. From 3 days onward, pituitary expression of CRH receptor and AVP receptor was increased. From acute throughout prolonged sepsis, pituitary POMC mRNA was always elevated (all p < 0.05). In contrast, markers of POMC processing into ACTH and of ACTH secretion, negatively regulated by glucocorticoid receptor ligand binding, were suppressed at all time points (all p ≤ 0.05). Distorted adrenocortical structure (p < 0.05) and lipid depletion (p < 0.05) were present, while most markers of adrenocortical steroidogenic activity were increased at all time points (all p < 0.05). CONCLUSION: Together, these findings suggest that increased circulating POMC, through CRH/AVP-driven POMC expression and impaired processing into ACTH, could represent a new piece in the puzzling ACTH-cortisol dissociation.


Asunto(s)
Hormona Adrenocorticotrópica/análisis , Hidrocortisona/análisis , Proopiomelanocortina/análisis , Sepsis/sangre , Hormona Adrenocorticotrópica/sangre , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Hidrocortisona/sangre , Masculino , Ratones , Persona de Mediana Edad , Proopiomelanocortina/sangre , Sepsis/fisiopatología
7.
Crit Care ; 25(1): 252, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274000

RESUMEN

BACKGROUND: Muscle weakness is a complication of critical illness which hampers recovery. In critically ill mice, supplementation with the ketone body 3-hydroxybutyrate has been shown to improve muscle force and to normalize illness-induced hypocholesterolemia. We hypothesized that altered cholesterol homeostasis is involved in development of critical illness-induced muscle weakness and that this pathway can be affected by 3-hydroxybutyrate. METHODS: In both human critically ill patients and septic mice, the association between circulating cholesterol concentrations and muscle weakness was assessed. In septic mice, the impact of 3-hydroxybutyrate supplementation on cholesterol homeostasis was evaluated with use of tracer technology and through analysis of markers of cholesterol metabolism and downstream pathways. RESULTS: Serum cholesterol concentrations were lower in weak than in non-weak critically ill patients, and in multivariable analysis adjusting for baseline risk factors, serum cholesterol was inversely correlated with weakness. In septic mice, plasma cholesterol correlated positively with muscle force. In septic mice, exogenous 3-hydroxybutyrate increased plasma cholesterol and altered cholesterol homeostasis, by normalization of plasma mevalonate and elevation of muscular, but not hepatic, expression of cholesterol synthesis genes. In septic mice, tracer technology revealed that 3-hydroxybutyrate was preferentially taken up by muscle and metabolized into cholesterol precursor mevalonate, rather than TCA metabolites. The 3-hydroxybutyrate protection against weakness was not related to ubiquinone or downstream myofiber mitochondrial function, whereas cholesterol content in myofibers was increased. CONCLUSIONS: These findings point to a role for low cholesterol in critical illness-induced muscle weakness and to a protective mechanism-of-action for 3-hydroxybutyrate supplementation.


Asunto(s)
Colesterol/análisis , Homeostasis/efectos de los fármacos , Ácido 3-Hidroxibutírico , Anciano , Anciano de 80 o más Años , Animales , Colesterol/metabolismo , Enfermedad Crítica/terapia , Modelos Animales de Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL/metabolismo , Ratones Endogámicos C57BL/fisiología , Persona de Mediana Edad , Análisis Multivariante , Debilidad Muscular/fisiopatología
8.
Crit Care ; 24(1): 536, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867803

RESUMEN

BACKGROUND: In critically ill children, omitting early use of parenteral nutrition (late-PN versus early-PN) reduced infections, accelerated weaning from mechanical ventilation, and shortened PICU stay. We hypothesized that fasting-induced ketogenesis mediates these benefits. METHODS: In a secondary analysis of the PEPaNIC RCT (N = 1440), the impact of late-PN versus early-PN on plasma 3-hydroxybutyrate (3HB), and on blood glucose, plasma insulin, and glucagon as key ketogenesis regulators, was determined for 96 matched patients staying ≥ 5 days in PICU, and the day of maximal 3HB-effect, if any, was identified. Subsequently, in the total study population, plasma 3HB and late-PN-affected ketogenesis regulators were measured on that average day of maximal 3HB effect. Multivariable Cox proportional hazard and logistic regression analyses were performed adjusting for randomization and baseline risk factors. Whether any potential mediator role for 3HB was direct or indirect was assessed by further adjusting for ketogenesis regulators. RESULTS: In the matched cohort (n = 96), late-PN versus early-PN increased plasma 3HB throughout PICU days 1-5 (P < 0.0001), maximally on PICU day 2. Also, blood glucose (P < 0.001) and plasma insulin (P < 0.0001), but not glucagon, were affected. In the total cohort (n = 1142 with available plasma), late-PN increased plasma 3HB on PICU day 2 (day 1 for shorter stayers) from (median [IQR]) 0.04 [0.04-0.04] mmol/L to 0.75 [0.04-2.03] mmol/L (P < 0.0001). The 3HB effect of late-PN statistically explained its impact on weaning from mechanical ventilation (P = 0.0002) and on time to live PICU discharge (P = 0.004). Further adjustment for regulators of ketogenesis did not alter these findings. CONCLUSION: Withholding early-PN in critically ill children significantly increased plasma 3HB, a direct effect that statistically mediated an important part of its outcome benefit.


Asunto(s)
Cuerpos Cetónicos/biosíntesis , Nutrición Parenteral , Privación de Tratamiento , Niño , Preescolar , Femenino , Humanos , Lactante , Unidades de Cuidado Intensivo Pediátrico , Masculino , Resultado del Tratamiento
9.
J Hepatol ; 70(5): 963-973, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677458

RESUMEN

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Asunto(s)
Adaptación Fisiológica , Hígado/metabolismo , PPAR alfa/fisiología , Sepsis/metabolismo , Animales , Infecciones Bacterianas/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL
10.
Crit Care ; 23(1): 236, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31262340

RESUMEN

BACKGROUND: ICU-acquired weakness is a debilitating consequence of prolonged critical illness that is associated with poor outcome. Recently, premorbid obesity has been shown to protect against such illness-induced muscle wasting and weakness. Here, we hypothesized that this protection was due to increased lipid and ketone availability. METHODS: In a centrally catheterized, fluid-resuscitated, antibiotic-treated mouse model of prolonged sepsis, we compared markers of lipolysis and fatty acid oxidation in lean and obese septic mice (n = 117). Next, we compared markers of muscle wasting and weakness in septic obese wild-type and adipose tissue-specific ATGL knockout (AAKO) mice (n = 73), in lean septic mice receiving either intravenous infusion of lipids or standard parenteral nutrition (PN) (n = 70), and in lean septic mice receiving standard PN supplemented with either the ketone body 3-hydroxybutyrate or isocaloric glucose (n = 49). RESULTS: Obese septic mice had more pronounced lipolysis (p ≤ 0.05), peripheral fatty acid oxidation (p ≤ 0.05), and ketogenesis (p ≤ 0.05) than lean mice. Blocking lipolysis in obese septic mice caused severely reduced muscle mass (32% loss vs. 15% in wild-type, p < 0.001) and specific maximal muscle force (59% loss vs. 0% in wild-type; p < 0.001). In contrast, intravenous infusion of lipids in lean septic mice maintained specific maximal muscle force up to healthy control levels (p = 0.6), whereas this was reduced with 28% in septic mice receiving standard PN (p = 0.006). Muscle mass was evenly reduced with 29% in both lean septic groups (p < 0.001). Lipid administration enhanced fatty acid oxidation (p ≤ 0.05) and ketogenesis (p < 0.001), but caused unfavorable liver steatosis (p = 0.01) and a deranged lipid profile (p ≤ 0.01). Supplementation of standard PN with 3-hydroxybutyrate also attenuated specific maximal muscle force up to healthy control levels (p = 0.1), but loss of muscle mass could not be prevented (25% loss in both septic groups; p < 0.001). Importantly, this intervention improved muscle regeneration markers (p ≤ 0.05) without the unfavorable side effects seen with lipid infusion. CONCLUSIONS: Obesity-induced muscle protection during sepsis is partly mediated by elevated mobilization and metabolism of endogenous fatty acids. Furthermore, increased availability of ketone bodies, either through ketogenesis or through parenteral infusion, appears to protect against sepsis-induced muscle weakness also in the lean.


Asunto(s)
Tejido Adiposo/fisiopatología , Lipólisis/fisiología , Debilidad Muscular/etiología , Sepsis/complicaciones , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacocinética , Cetonas/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Debilidad Muscular/metabolismo , Debilidad Muscular/fisiopatología , Obesidad/fisiopatología , Factores Protectores , Sepsis/metabolismo , Sepsis/fisiopatología
11.
Acta Paediatr ; 108(5): 792-805, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30537292

RESUMEN

AIM: Thyroid hormones are crucial for foetal and neonatal brain development. This paper provides an overview of the normal role of thyroid hormones in foetal brain development and the pathophysiology of transient hypothyroxinaemia of prematurity (THOP). It also discusses the diagnostic and therapeutic controversies around THOP and looks at directions for future research. METHODS: We used the PubMed and Embase databases to identify papers published in English from 1969 to June 2018. This identified 20 papers about the impact of THOP on neurodevelopment and seven randomised controlled trials about therapeutic approaches from 1981-2016. RESULTS: THOP has been researched for more than three decades. The impact of temporarily low thyroxine levels, without any increase in pituitary-secreted thyroid-stimulating hormone at a critical timeframe in an infant's brain development, is still debated. Heterogeneity in THOP definitions, difficulties with thyroid hormone assessment, identifying patients at risk and a clear lack of sufficiently powered studies add to the current controversy. There are indications that thyroid hormone substitution might be useful in extremely low gestational age neonates with THOP. CONCLUSION: Some preterm infants could benefit from THOP treatment, but more studies are needed to clarify further treatment strategies, including the optimal timing of initiation and duration.


Asunto(s)
Hipotiroidismo/etiología , Hipotiroidismo/terapia , Enfermedades del Prematuro/terapia , Hormonas Tiroideas/uso terapéutico , Humanos , Recien Nacido Prematuro , Tiroxina/sangre
12.
J Hepatol ; 69(4): 803-809, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29730473

RESUMEN

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by acute decompensation of cirrhosis, development of organ failure and high short-term mortality. Whether the outcome in patients admitted to the intensive care unit (ICU) with ACLF differs from other ICU populations is unknown. We compared the clinical course and host response in ICU patients with or without ACLF, matched for baseline severity of illness scores and characteristics. METHODS: From the large prospective EPaNIC randomized control trial database (n = 4,640), 133 patients were identified with cirrhosis of whom 71 fulfilled the Chronic Liver Failure Consortium criteria for ACLF. These patients were matched for type and severity of illness and demographics to 71 septic and 71 medical ICU patients from the same database without chronic liver disease. Clinical, biochemical and outcome parameters were compared in this cohort study of 213 patients. In a subset of 100 patients, day 1 serum cytokines were quantified. RESULTS: The outcome of ACLF, when compared to septic or medical ICU patients, matched for baseline parameters of illness severity, was similar regarding length of ICU stay, development of new infections, organ failure and septic shock. ICU, hospital and 90-day mortality were similar between the groups. C-reactive protein and platelet levels were lower in patients with ACLF throughout the first week. Cytokines, including IL-10, IL-1ß, IL-6, and IL-8, were similarly elevated in ACLF and septic ICU patients on day 1. However, TNF-α levels were higher in patients with ACLF. CONCLUSION: Patients with ACLF admitted to the ICU showed comparable clinical and ICU outcomes as ICU patients without chronic liver disease, but with similar baseline severity of illness characteristics. This suggests that ICU admission criteria should not be different in ACLF populations. LAY SUMMARY: Liver function may abruptly deteriorate in patients with chronic liver disease with cirrhosis, often resulting in these patients being admitted to an intensive care unit (ICU) with organ failure. Previous studies have indicated that this sudden deterioration, called acute-on-chronic liver failure is associated with very high mortality rates, which often resulted in deferred ICU care because of a perception of futility. Our study now shows that the ICU course and outcome are not different when patients with acute-on-chronic liver failure are compared to other ICU patients matched for severity of illness. This demonstrates that patients with acute-on-chronic liver failure deserve the same ICU care given to other ICU populations.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada/mortalidad , Unidades de Cuidados Intensivos , Insuficiencia Hepática Crónica Agudizada/inmunología , Insuficiencia Hepática Crónica Agudizada/terapia , Proteína C-Reactiva/análisis , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos
13.
Pediatr Crit Care Med ; 19(12): 1120-1129, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30234740

RESUMEN

OBJECTIVES: In the Early versus Late Parenteral Nutrition in the Pediatric ICU randomized controlled trial, delaying parenteral nutrition to beyond day 7 (late parenteral nutrition) was clinically superior to supplemental parenteral nutrition initiated within 24 hours (early parenteral nutrition), but resulted in a higher rise in bilirubin. We aimed to document prevalence and prognostic value of abnormal liver tests in the PICU and the impact hereon of withholding early parenteral nutrition. DESIGN: Preplanned secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric ICU randomized controlled trial. Total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, alkaline phosphatase plasma concentrations were measured systematically in PICU. Liver test analyses were adjusted for baseline characteristics including severity of illness. SETTING: Three PICUs in Belgium, the Netherlands, and Canada. PATIENTS: As neonatal jaundice was considered a confounder, only the 1,231 of the 1,440 Early versus Late Parenteral Nutrition in the Pediatric ICU-patients 28 days to 17 years old were included. INTERVENTIONS: Late parenteral nutrition as compared with early parenteral nutrition. MEASUREMENTS AND MAIN RESULTS: During the first seven PICU days, the prevalence of cholestasis (> 2 mg/dL [34.2 µmol/L] bilirubin) ranged between 3.8% and 4.9% and of hypoxic hepatitis (≥ 20-fold upper limit of normality for alanine aminotransferase and aspartate aminotransferase) between 0.8% and 2.2%, both unaffected by the use of parenteral nutrition. Throughout the first week in PICU plasma bilirubin concentrations were higher in late parenteral nutrition patients (p < 0.05), but became comparable to early parenteral nutrition patients as soon as parenteral nutrition was started on day 8. Plasma concentrations of gamma-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were unaffected by parenteral nutrition. High day 1 plasma concentrations of gamma-glutamyl transpeptidase, alanine aminotransferase, and aspartate aminotransferase (p ≤ 0.01), but not alkaline phosphatase, were independent risk factors for PICU mortality. Day 1 plasma bilirubin concentrations displayed a U-shaped association with PICU mortality, with higher mortality associated with bilirubin less than 0.20 mg/dL and greater than 0.76 mg/dL (< 3.42 µmol/L and > 13 µmol/L) (p ≤ 0.01). CONCLUSIONS: Overt cholestasis and hypoxic hepatitis were rare and unrelated to the nutritional strategy. However, withholding parenteral nutrition up to 1 week in PICU increased plasma bilirubin. A mild elevation of bilirubin on the first PICU day was associated with lower risk of death and may reflect a stress response, rather than true cholestasis.


Asunto(s)
Bilirrubina/sangre , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Nutrición Parenteral/métodos , Biomarcadores/sangre , Niño , Preescolar , Colestasis/sangre , Colestasis/epidemiología , Enfermedad Crítica , Ingestión de Energía , Femenino , Hepatitis/sangre , Hepatitis/epidemiología , Mortalidad Hospitalaria , Humanos , Lactante , Pruebas de Función Hepática , Masculino , Nutrición Parenteral/efectos adversos , Prevalencia , Factores de Tiempo
14.
Am J Respir Crit Care Med ; 196(9): 1131-1143, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28475354

RESUMEN

RATIONALE: Critical illness is hallmarked by muscle wasting and disturbances in glucose, lipid, and amino acid homeostasis. Circulating concentrations of glucagon, a catabolic hormone that affects these metabolic pathways, are elevated during critical illness. Insight in the nutritional regulation of glucagon and its metabolic role during critical illness is lacking. OBJECTIVES: To evaluate whether macronutrient infusion can suppress plasma glucagon during critical illness and study the role of illness-induced glucagon abundance in the disturbed glucose, lipid, and amino acid homeostasis and in muscle wasting during critical illness. METHODS: In human and mouse studies, we infused macronutrients and manipulated glucagon availability up and down to investigate its acute and chronic metabolic role during critical illness. MEASUREMENTS AND MAIN RESULTS: In critically ill patients, infusing glucose with insulin did not lower glucagon, whereas parenteral nutrition containing amino acids increased glucagon. In critically ill mice, infusion of amino acids increased glucagon and up-regulated markers of hepatic amino acid catabolism without affecting muscle wasting. Immunoneutralizing glucagon in critically ill mice only transiently affected glucose and lipid metabolism, did not affect muscle wasting, but drastically suppressed markers of hepatic amino acid catabolism and reversed the illness-induced hypoaminoacidemia. CONCLUSIONS: These data suggest that elevated glucagon availability during critical illness increases hepatic amino acid catabolism, explaining the illness-induced hypoaminoacidemia, without affecting muscle wasting and without a sustained impact on blood glucose. Furthermore, amino acid infusion likely results in a further breakdown of amino acids in the liver, mediated by increased glucagon, without preventing muscle wasting. Clinical trial registered with www.clinicaltrials.gov (NCT 00512122).


Asunto(s)
Glucagón/sangre , Atrofia Muscular/sangre , Atrofia Muscular/terapia , Nutrición Parenteral/métodos , Anciano , Aminoácidos/sangre , Animales , Glucemia , Enfermedad Crítica , Modelos Animales de Enfermedad , Femenino , Glucagón/metabolismo , Glucosa/administración & dosificación , Humanos , Insulina/administración & dosificación , Insulina/sangre , Masculino , Ratones , Persona de Mediana Edad , Atrofia Muscular/metabolismo , Resultado del Tratamiento
15.
Clin Endocrinol (Oxf) ; 86(1): 26-36, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27422812

RESUMEN

OBJECTIVE: Critical illness is hallmarked by low plasma ACTH in the face of high plasma cortisol. We hypothesized that frequently used drugs could play a role by affecting the hypothalamic-pituitary-adrenal axis. DESIGN: Observational association study. PATIENTS: A total of 156 medical-surgical critically ill patients. MEASUREMENTS: Plasma concentrations of ACTH and total/free cortisol were quantified upon ICU admission and throughout the first 3 ICU days. The independent associations between drugs administered 24 h prior to ICU admission and plasma ACTH and cortisol concentrations upon ICU admission were quantified with use of multivariable linear regression analyses. RESULTS: Upon ICU admission, compared with healthy subjects, patients had low mean±SEM plasma ACTH concentrations (2·7 ± 0·6 pmol/l vs 9·0 ± 1·6 pmol/l, P < 0·0001) in the face of unaltered total plasma cortisol (336·7 ± 30·4 nmol/l vs 300·8 ± 16·6 nmol/l, P = 0·3) and elevated free plasma cortisol concentrations (41·4 ± 5·5 nmol/l vs 5·5 ± 0·8 nmol/l, P = 0·04). Plasma ACTH concentrations remained low (P < 0·001) until day 3, whereas plasma (free) cortisol concentrations steeply increased and remained high (P < 0·001). No independent correlations with plasma ACTH were found. In contrast, the total admission plasma cortisol concentration was independently and negatively associated with the cumulative opioid (P = 0·001) and propofol (P = 0·02) dose, the use of etomidate (P = 0·03), and positively with the cumulative dobutamine dose (P = 0·0007). CONCLUSIONS: Besides the known suppressive effect of etomidate, opioids and propofol may also suppress and dobutamine increases plasma cortisol in a dose-dependent manner. The observed independent associations suggest drug effects not mediated centrally via ACTH, but rather peripherally by a direct or indirect action on the adrenal cortex.


Asunto(s)
Hormona Adrenocorticotrópica/sangre , Enfermedad Crítica , Hidrocortisona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante
16.
N Engl J Med ; 368(16): 1477-88, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23506003

RESUMEN

BACKGROUND: Critical illness is often accompanied by hypercortisolemia, which has been attributed to stress-induced activation of the hypothalamic-pituitary-adrenal axis. However, low corticotropin levels have also been reported in critically ill patients, which may be due to reduced cortisol metabolism. METHODS: In a total of 158 patients in the intensive care unit and 64 matched controls, we tested five aspects of cortisol metabolism: daily levels of corticotropin and cortisol; plasma cortisol clearance, metabolism, and production during infusion of deuterium-labeled steroid hormones as tracers; plasma clearance of 100 mg of hydrocortisone; levels of urinary cortisol metabolites; and levels of messenger RNA and protein in liver and adipose tissue, to assess major cortisol-metabolizing enzymes. RESULTS: Total and free circulating cortisol levels were consistently higher in the patients than in controls, whereas corticotropin levels were lower (P<0.001 for both comparisons). Cortisol production was 83% higher in the patients (P=0.02). There was a reduction of more than 50% in cortisol clearance during tracer infusion and after the administration of 100 mg of hydrocortisone in the patients (P≤0.03 for both comparisons). All these factors accounted for an increase by a factor of 3.5 in plasma cortisol levels in the patients, as compared with controls (P<0.001). Impaired cortisol clearance also correlated with a lower cortisol response to corticotropin stimulation. Reduced cortisol metabolism was associated with reduced inactivation of cortisol in the liver and kidney, as suggested by urinary steroid ratios, tracer kinetics, and assessment of liver-biopsy samples (P≤0.004 for all comparisons). CONCLUSIONS: During critical illness, reduced cortisol breakdown, related to suppressed expression and activity of cortisol-metabolizing enzymes, contributed to hypercortisolemia and hence corticotropin suppression. The diagnostic and therapeutic implications for critically ill patients are unknown. (Funded by the Belgian Fund for Scientific Research and others; ClinicalTrials.gov numbers, NCT00512122 and NCT00115479; and Current Controlled Trials numbers, ISRCTN49433936, ISRCTN49306926, and ISRCTN08083905.).


Asunto(s)
Hormona Adrenocorticotrópica/sangre , Enfermedad Crítica , Hidrocortisona/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasas/genética , 11-beta-Hidroxiesteroide Deshidrogenasas/metabolismo , Anciano , Estudios de Casos y Controles , Síndrome de Cushing , Femenino , Humanos , Hidrocortisona/sangre , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo
19.
Hepatology ; 60(1): 202-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24213952

RESUMEN

UNLABELLED: Cholestatic liver dysfunction (CLD) and biliary sludge often occur during critical illness and are allegedly aggravated by parenteral nutrition (PN). Delaying initiation of PN beyond day 7 in the intensive care unit (ICU) (late PN) accelerated recovery as compared with early initiation of PN (early PN). However, the impact of nutritional strategy on biliary sludge and CLD has not been fully characterized. This was a preplanned subanalysis of a large randomized controlled trial of early PN versus late PN (n = 4,640). In all patients plasma bilirubin (daily) and liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyl transpeptidase [GGT], alkaline phosphatase [ALP], twice weekly; n = 3,216) were quantified. In a random predefined subset of patients, plasma bile acids (BAs) were also quantified at baseline and on days 3, 5, and last ICU-day (n = 280). Biliary sludge was ultrasonographically evaluated on ICU-day 5 (n = 776). From day 1 after randomization until the end of the 7-day intervention window, bilirubin was higher in the late PN than in the early PN group (P < 0.001). In the late PN group, as soon as PN was started on day 8 bilirubin fell and the two groups became comparable. Maximum levels of GGT, ALP, and ALT were lower in the late PN group (P < 0.01). Glycine/taurine-conjugated primary BAs increased over time in ICU (P < 0.01), similarly for the two groups. Fewer patients in the late PN than in the early PN group developed biliary sludge on day 5 (37% versus 45%; P = 0.04). CONCLUSION: Tolerating substantial caloric deficit by withholding PN until day 8 of critical illness increased plasma bilirubin but reduced the occurrence of biliary sludge and lowered GGT, ALP, and ALT. These results suggest that hyperbilirubinemia during critical illness does not necessarily reflect cholestasis and instead may be an adaptive response that is suppressed by early PN.


Asunto(s)
Bilis , Bilirrubina/sangre , Colestasis/prevención & control , Enfermedad Crítica/terapia , Hiperbilirrubinemia/etiología , Nutrición Parenteral/efectos adversos , Anciano , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Ácidos y Sales Biliares/sangre , Colestasis/sangre , Colestasis/mortalidad , Enfermedad Crítica/mortalidad , Femenino , Humanos , Hiperbilirrubinemia/sangre , Hiperbilirrubinemia/mortalidad , Incidencia , Masculino , Persona de Mediana Edad , Nutrición Parenteral/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Factores de Riesgo , gamma-Glutamiltransferasa/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda