Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemosphere ; 250: 126216, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32087384

RESUMEN

Photodegradation of dissolved organic matter (DOM) is highly important in humic waters of peatland regions, yet the coupling between organic and organo-mineral colloids, trace metals and bioavailability of photodegraded products is poorly known. Here we studied photo-destruction of organo-mineral colloids induced by UV-irradiation of sterile-filtered mire water. We revealed two simultaneously occurring processes of transformation of DOM and trace elements speciation: (i) disintegration of high molecular weight organo-mineral colloids into lower molecular weight (<1 kDa) DOM and metal complexes and (ii) formation of particulate (>0.22 µm) aggregates of metals and organic matter. Over 26 days of UV-irradiation, up to 20% of dissolved organic carbon from peat waters was transformed into CO2. In addition to transformation of organic compounds, sizeable change in speciation and size fractionation of many trace metals such as Fe, Pb, Cd, Co, Zn, Cu, V, La, Ni and Cr occurred. Although short-term (1 day) UV-irradiation of mire water stimulated growth of cultivable Pseudomonas sp. bacterium, the long-term exposure (26 days) of organic substrate had a negative effect on bacterial development. Therefore, while sizeable transformation of the organic and metal colloidal load of peat water may occur over first 10 days of UV-irradiation, the enhanced bioavailability of UV-treated substrate is achieved after first day of exposure. The present study demonstrates the importance of even short-term UV-irradiation on colloidal transformation and potential bioavailability of humic waters from temperate mires and highlights the need for more detailed study of coupled metal-organic matter transformation induced by sunlight exposure of mire waters.


Asunto(s)
Coloides/química , Modelos Químicos , Ríos/química , Complejos de Coordinación , Agua Dulce/química , Sustancias Húmicas/análisis , Metales/análisis , Minerales , Peso Molecular , Fotólisis , Suelo , Oligoelementos/análisis , Rayos Ultravioleta
2.
J Colloid Interface Sci ; 435: 59-66, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25218048

RESUMEN

The adsorption of Zn onto the humic and illuvial horizons of the podzol soil in the presence of soil bacteria was studied using a batch-reactor technique as a function of the pH (from 2 to 9) and the Zn concentration in solution (from 0.076mM to 0.760mM). Exopolysaccharides-forming aerobic heterotrophs Pseudomonas aureofaciens were added at 0.1 and 1.0gwetL(-1) concentrations to two different soil horizons, and Zn adsorption was monitored as a function of the pH and the dissolved-Zn concentration. The pH-dependent adsorption edge demonstrated more efficient Zn adsorption by the humic horizon than the mineral horizon at otherwise similar soil concentrations. The Zn adsorption onto the EPS-poor strain was on slightly lower than that onto EPS-rich bacteria. Similar differences in the adsorption capacities between the soil and bacteria were also detected by "langmuirian" constant-pH experiments conducted in soil-Zn and bacteria-Zn binary systems. The addition of 0.1gwetL(-1)P. aureofaciens to a soil-bacteria system (4gdryL(-1)soil) resulted in statistically significant decrease in the adsorption yield, which was detectable from both the pH-dependent adsorption edge and the constant-pH isotherm experiments. Increasing the amount of added bacteria to 1gwetL(-1) further decreased the overall adsorption in the full range of the pH. This decrease was maximal for the EPS-rich bacteria and minimal for the EPS-poor bacteria (a factor of 2.8 and 2.2 at pH=6.9, respectively). These observations in binary and ternary systems were further rationalized by linear-programming modeling of surface equilibria that revealed the systematic differences in the number of binding sites and the surface-adsorption constant of zinc onto the two soil horizons with and without bacteria. The main finding of this work is that the adsorption of Zn onto the humic soil-bacteria system is lower than that in pure, bacteria-free soil systems. This difference is statistically significant (p<0.05). As such, EPS-rich bacteria are capable of efficiently shielding the soil particles from heavy-metal adsorption. The removal efficiency of heavy metals in an abiotic organic-rich soil system should therefore be significantly higher than that in the presence of bacteria. This effect can be explained by the shielding of strongly bound metal sites on the organic-rich soil particles by inert bacterial exopolysaccharides.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda