Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; 299(9): 105107, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517699

RESUMEN

Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.

2.
PLoS Pathog ; 17(1): e1009275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513206

RESUMEN

Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Chlorocebus aethiops , Ebolavirus/genética , Endocitosis , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno , Humanos , Espacio Intracelular/virología , Lisosomas/metabolismo , Transporte de Proteínas , Proteínas Tirosina Quinasas/genética , Células Vero , Virión , Internalización del Virus , Replicación Viral
3.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526097

RESUMEN

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Imidazoles , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Animales , Antivirales/farmacología , Imidazoles/farmacología , Ratones , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Estados Unidos , United States Food and Drug Administration
4.
Alcohol Clin Exp Res ; 42(4): 718-726, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29417597

RESUMEN

BACKGROUND: Chronic ethanol (EtOH) exposure has been found to inhibit adult hippocampal neurogenesis in multiple models of alcohol addiction. However, acute EtOH inhibition of adult neurogenesis is not well studied. Although many abused drugs have been found to inhibit adult neurogenesis, few have studied cannabinoids or cannabinoids with EtOH, although human use of both together is becoming more common. We used an acute binge alcohol drinking model in combination with select cannabinoid receptor agonists and antagonists to investigate the actions of each alone and together on hippocampal neurogenesis. METHODS: Adult male Wistar rats were treated with an acute binge dose of EtOH (5 g/kg, i.g.), cannabinoid 1 receptor (CB1R) or cannabinoid 2 receptor (CB2R) agonists, as well as selective cannabinoid (CB) antagonists, alone or combined. Hippocampal doublecortin (DCX), Ki67, and activated cleaved caspase-3 (CC3) immunohistochemistry were used to assess neurogenesis, neuroprogenitor proliferation, and cell death, respectively. RESULTS: We found that treatment with EtOH or the CB1R agonist, arachidonoyl-2'-chloroethylamide (ACEA), and the combination significantly reduced DCX-positive neurons (DCX + IR) in dentate gyrus (DG) and increased CC3. Further, using an inhibitor of endocannabinoid metabolism, for example, JZL195, we also found reduced DCX + IR neurogenesis. Treatment with 2 different CB1R antagonists (AM251 or SR141716) reversed both CB1R agonist and EtOH inhibition of adult neurogenesis. CB2R agonist HU-308 treatment did not produce any significant change in DCX + IR. Interestingly, neither EtOH nor CB1R agonist produced any alteration in cell proliferation in DG as measured by Ki67 + cell population, but CC3-positive cell numbers increased following EtOH or ACEA treatment suggesting an increase in cell death. CONCLUSIONS: Together, these findings suggest that acute CB1R cannabinoid receptor activation and binge EtOH treatment reduce neurogenesis through mechanisms involving CB1R.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Etanol/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Neurogénesis/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Animales , Cannabinoides/farmacología , Carbamatos/farmacología , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Interacciones Farmacológicas , Endocannabinoides/farmacología , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Piperazinas/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Rimonabant/farmacología
5.
Chemistry ; 23(19): 4615-4624, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28182309

RESUMEN

Allosteric sodium in the helix bundle of a G protein-coupled receptor (GPCR) can modulate the receptor activation on the intracellular side. This phenomenon has confounded the GPCR community for decades. In this work, we present a theoretical model that reveals the mechanism of the allosteric modulation induced by sodium in the δ-opioid receptor. We found that the allosteric sodium ion exploits a distinct conformation of the key residue Trp2746.48 to propagate the modulation to helices 5 and 6, which further transmits along the helices and regulates their positions on the intracellular side. This mechanism is supported by subsequent functional assays. Remarkably, our results highlight the contrast between the allosteric effects towards two GPCR partners, the G protein and ß-arrestin, as indicated by the fact that the allosteric modulation initiated by the sodium ion significantly affects the ß-arrestin recruitment, while it alters the G protein signaling only moderately. We believe that the mechanism revealed in this work can be used to explain allosteric effects initiated by sodium in other GPCRs since the allosteric sodium is highly conserved across GPCRs.


Asunto(s)
Receptores Opioides delta/metabolismo , Sodio/metabolismo , Regulación Alostérica , Sitio Alostérico , Humanos , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Receptores Opioides delta/química , Sodio/química , Termodinámica
6.
J Biol Chem ; 289(48): 33245-57, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25271165

RESUMEN

Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1ß-related cytokines IL-1ß and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1ß is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1ß genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1ß production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1ß, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1ß production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.


Asunto(s)
Proteínas Portadoras/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Inflamasomas/metabolismo , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/efectos adversos , Compuestos de Alumbre/farmacología , Animales , Proteínas Portadoras/genética , Inhibidores de Disociación de Guanina Nucleótido/genética , Células HEK293 , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Peritonitis/patología , Estructura Terciaria de Proteína
7.
J Biol Chem ; 287(7): 4863-74, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22167191

RESUMEN

Regulation of the assembly and function of G-protein heterotrimers (Gα·GDP/Gßγ) is a complex process involving the participation of many accessory proteins. One of these regulators, GPSM3, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. Although GPSM3 is known to bind Gα(i)·GDP subunits via its GoLoco motifs, here we report that GPSM3 also interacts with the Gß subunits Gß1 to Gß4, independent of Gγ or Gα·GDP subunit interactions. Bimolecular fluorescence complementation studies suggest that the Gß-GPSM3 complex is formed at, and transits through, the Golgi apparatus and also exists as a soluble complex in the cytoplasm. GPSM3 and Gß co-localize endogenously in THP-1 cells at the plasma membrane and in a juxtanuclear compartment. We provide evidence that GPSM3 increases Gß stability until formation of the Gßγ dimer, including association of the Gß-GPSM3 complex with phosducin-like protein PhLP and T-complex protein 1 subunit eta (CCT7), two known chaperones of neosynthesized Gß subunits. The Gß interaction site within GPSM3 was mapped to a leucine-rich region proximal to the N-terminal side of its first GoLoco motif. Both Gß and Gα(i)·GDP binding events are required for GPSM3 activity in inhibiting phospholipase-Cß activation. GPSM3 is also shown in THP-1 cells to be important for Akt activation, a known Gßγ-dependent pathway. Discovery of a Gß/GPSM3 interaction, independent of Gα·GDP and Gγ involvement, adds to the combinatorial complexity of the role of GPSM3 in heterotrimeric G-protein regulation.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Células COS , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Chlorocebus aethiops , Activación Enzimática/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Inhibidores de Disociación de Guanina Nucleótido/genética , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo
8.
J Biol Chem ; 287(37): 31270-9, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22843681

RESUMEN

G-protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of the Gα(i/o)-Loco (GoLoco) motif containing proteins. GPSM3 acts through its two GoLoco motifs to exert GDP dissociation inhibitor activity over Gα(i) subunits; recently revealed is the existence of an additional regulatory site within GPSM3 directed toward monomeric Gß subunits during their biosynthesis. Here, using in silico and proteomic approaches, we have found that GPSM3 also interacts directly with numerous members of the 14-3-3 protein family. This interaction is dependent on GPSM3 phosphorylation, creating a mode II consensus 14-3-3 binding site. 14-3-3 binding to the N-terminal disordered region of GPSM3 confers stabilization from protein degradation. The complex of GPSM3 and 14-3-3 is exclusively cytoplasmic, and both moieties mutually control their exclusion from the nucleus. Phosphorylation of GPSM3 by a proline-directed serine/threonine kinase and the resultant association of 14-3-3 is the first description of post-translational regulation of GPSM3 subcellular localization, a process that likely regulates important spatio-temporal aspects of G-protein-coupled receptor signaling modulation by GPSM3.


Asunto(s)
Proteínas 14-3-3/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis , Transducción de Señal/fisiología , Proteínas 14-3-3/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/genética , Células HEK293 , Humanos , Fosforilación/fisiología , Estabilidad Proteica , Transporte de Proteínas/fisiología
9.
J Cell Sci ; 124(Pt 19): 3292-304, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21940795

RESUMEN

We identified the WD-repeat-containing protein, WDR36, as an interacting partner of the ß isoform of thromboxane A(2) receptor (TPß) by yeast two-hybrid screening. We demonstrated that WDR36 directly interacts with the C-terminus and the first intracellular loop of TPß by in vitro GST-pulldown assays. The interaction in a cellular context was observed by co-immunoprecipitation, which was positively affected by TPß stimulation. TPß-WDR36 colocalization was detected by confocal microscopy at the plasma membrane in non-stimulated HEK293 cells but the complex translocated to intracellular vesicles following receptor stimulation. Coexpression of WDR36 and its siRNA-mediated knockdown, respectively, increased and inhibited TPß-induced Gαq signalling. Interestingly, WDR36 co-immunoprecipitated with Gαq, and promoted TPß-Gαq interaction. WDR36 also associated with phospholipase Cß (PLCß) and increased the interaction between Gαq and PLCß, but prevented sequestration of activated Gαq by GRK2. In addition, the presence of TPß in PLCß immunoprecipitates was augmented by expression of WDR36. Finally, disease-associated variants of WDR36 affected its ability to modulate Gαq-mediated signalling by TPß. We report that WDR36 acts as a new scaffold protein tethering a G-protein-coupled receptor, Gαq and PLCß in a signalling complex.


Asunto(s)
Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfolipasa C beta/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Activación Enzimática , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Isoenzimas/metabolismo , Microscopía Fluorescente , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Receptores de Tromboxano A2 y Prostaglandina H2/agonistas , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo
10.
Nat Commun ; 14(1): 3684, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407564

RESUMEN

Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and ß-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting ß-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Arrestina beta 2/metabolismo , Descubrimiento de Drogas , beta-Arrestinas/metabolismo
11.
ACS Infect Dis ; 9(5): 1064-1077, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37053583

RESUMEN

Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Asunto(s)
Arenavirus , COVID-19 , Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Línea Celular , Esfingosina , SARS-CoV-2 , Proteínas Virales de Fusión
12.
ACS Omega ; 7(20): 16939-16951, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647460

RESUMEN

Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure-function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5'-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5'-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na+ pocket, but only at the active or partially active opioid receptor.

13.
iScience ; 25(11): 105316, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36254158

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.

14.
Commun Biol ; 5(1): 933, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085335

RESUMEN

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Anticuerpos Monoclonales , Cricetinae , Humanos , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética
15.
Nat Commun ; 13(1): 4784, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970983

RESUMEN

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan's export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Medio Oriente/epidemiología , Pandemias/prevención & control , Viaje
16.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357713

RESUMEN

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , SARS-CoV-2/genética
17.
mBio ; 12(3): e0078821, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34182784

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is continuously evolving. Although its RNA-dependent RNA polymerase exhibits some exonuclease proofreading activity, viral sequence diversity can be produced by replication errors and host factors. A diversity of genetic variants can be observed in the intrahost viral population structure of infected individuals. Most mutations will follow a neutral molecular evolution and will not make significant contributions to variations within and between infected hosts. Herein, we profiled the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies, using high-throughput sequencing data sets from 15,289 infected individuals and infected cell lines. Despite high mutational background, we identified recurrent intragenetic variable positions in the samples analyzed, including several positions at the end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high frequency of C→A missense mutations resulting in the S protein lacking the last 20 amino acids (SΔ20). We found that this truncated S protein undergoes increased processing and increased syncytium formation, presumably due to escaping M protein retention in intracellular compartments. Our findings suggest the emergence of a high-frequency viral sublineage that is not horizontally transmitted but potentially involved in intrahost disease cytopathic effects. IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection. Many SARS-CoV-2 variants have been recently described and show phenotypic selection toward more infectious viruses. Our study describes another type of variant that does not contribute to interhost heterogeneity but rather phenotypic selection toward variants that might have increased cytopathic effects. We identified that a C-terminal truncation of the spike protein removes an important endoplasmic reticulum (ER) retention signal, which consequently results in a spike variant that easily travels through the Golgi complex toward the plasma membrane in a preactivated conformation, leading to increased syncytium formation.


Asunto(s)
COVID-19/patología , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Línea Celular , Evolución Molecular , Variación Genética/genética , Células Gigantes/virología , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tasa de Mutación , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología
18.
EBioMedicine ; 74: 103700, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34861490

RESUMEN

BACKGROUND: Antibodies raised against human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 severity. However, the relationship between sCoVs exposure and SARS-CoV-2 correlates of protection are not clearly identified. METHODS: We performed a cross-sectional analysis of cross-reactivity and cross-neutralization to SARS-CoV-2 antigens (S-RBD, S-trimer, N) using pre-pandemic sera from four different groups: pediatrics and adolescents, individuals 21 to 70 years of age, older than 70 years of age, and individuals living with HCV or HIV. Data was then further analysed using machine learning to identify predictive patterns of neutralization based on sCoVs serology. FINDINGS: Antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also show a range of neutralizing activity (0-45%) with median inhibition ranging from 17.6 % to 23.3 % in serum that interferes with SARS-CoV-2 spike attachment to ACE2 independently of age group. While the abundance of sCoV antibodies did not directly correlate with neutralization, we show that neutralizing activity is rather dependent on relative ratios of IgGs in sera directed to all four sCoV spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the most important predictors of neutralization. INTERPRETATION: Our data support the concept that exposure to sCoVs triggers antibody responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, which may potentially impact COVID-19 disease severity through other latent variables. FUNDING: This study was supported by a grant by the CIHR (VR2 -172722) and by a grant supplement by the CITF, and by a NRC Collaborative R&D Initiative Grant (PR031-1).


Asunto(s)
Anticuerpos Antivirales/sangre , Coronavirus Humano 229E/inmunología , Coronavirus Humano NL63/inmunología , Coronavirus Humano OC43/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adolescente , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , COVID-19/patología , Resfriado Común/virología , Reacciones Cruzadas/inmunología , Estudios Transversales , Humanos , Persona de Mediana Edad , Estudios Seroepidemiológicos , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adulto Joven
19.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34658235

RESUMEN

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Atovacuona/farmacología , Humanos , Estados Unidos
20.
Am J Physiol Cell Physiol ; 299(3): C654-64, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20573995

RESUMEN

Regulator of G protein signaling (RGS) proteins are considered key modulators of G protein-coupled receptor (GPCR)-mediated signal transduction. These proteins act directly on Galpha subunits in vitro to increase their intrinsic rate of GTP hydrolysis; this activity is central to the prevailing view of RGS proteins as negative regulators of agonist-initiated GPCR signaling. However, the specificities of action of particular RGS proteins toward specific GPCRs in an integrated cellular context remain unclear. Here, we developed a medium-throughput assay to address this question in a wholly endogenous context using RNA interference. We performed medium-throughput calcium mobilization assays of agonist-stimulated muscarinic acetylcholine and protease-activated receptors in human embryonic kidney 293 (HEK293) cells transfected with individual members of a "pooled duplex" short interfering RNA library targeting all conventional human RGS transcripts. Only knockdown of RGS11 increased both carbachol-mediated calcium mobilization and inositol phosphate accumulation. Surprisingly, we found that knockdown of RGS8 and RGS9, but not other conventional RGS proteins, significantly decreased carbachol-mediated calcium mobilization, whereas only RGS8 knockdown decreased protease-activated receptor-1 (PAR-1)-mediated calcium mobilization. Loss of responsiveness toward carbachol and PAR-1 agonist peptide upon RGS8 knockdown appears due, at least in part, to a loss in respective receptor cell surface expression, although this is not the case for RGS9 knockdown. Our data suggest a cellular role for RGS8 in the stable surface expression of M3 muscarinic acetylcholine receptor and PAR-1, as well as a specific and opposing set of functions for RGS9 and RGS11 in modulating carbachol responsiveness similar to that seen in Caenorhabditis elegans.


Asunto(s)
Proteínas RGS/metabolismo , Interferencia de ARN , Receptor PAR-1/metabolismo , Receptores Muscarínicos/metabolismo , Transducción de Señal , Calcio/metabolismo , Carbacol/farmacología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Agonistas Muscarínicos/farmacología , Oligopéptidos/farmacología , Proteínas RGS/genética , ARN Interferente Pequeño/genética , Receptor PAR-1/agonistas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda