RESUMEN
Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous-wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation on the electron's wavefunction. Here, we show that femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam. The vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy. This method offers a high degree of scalability to small length scales and a highly efficient manipulation of the electron vorticity with attosecond precision. Besides the direct implications in the investigation of nanoscale ultrafast processes in which chirality plays a major role, we further discuss the perspectives of using this technique to shape the wavefunction of charged composite particles, such as protons, and how it can be used to probe their internal structure.
RESUMEN
Polarization states of light, represented by different points on a Poincaré sphere, can be readily analyzed for a Gaussian beam by a combination of wave plates and polarizers. However, this method cannot be extended to higher-order Poincaré spheres and complex polarization patterns produced by coherent superpositions of vector vortex (VV) beams. We demonstrate the visualization of complex polarization patterns by imprinting them onto a solid surface in the form of periodic nano-gratings oriented parallel to the local structure of the electric field of light. We design unconventional surface structures by controlling the superposition of VV beams. Our method is of potential interest to the production of sub-wavelength nano-structures.
RESUMEN
Engineering material properties is key for development of smart materials and next generation nanodevices. This requires nanoscale spatial precision and control to fabricate structures/defects. Lithographic techniques are widely used for nanostructuring in which a geometric pattern on a mask is transferred to a resist by photons or charged particles and subsequently engraved on the substrate. However, direct mask-less fabrication has only been possible with electron and ion beams. That is because light has an inherent disadvantage; the diffraction limit makes it difficult to interact with matter on dimensions smaller than the wavelength of light. Here we demonstrate spatially controlled formation of nanocones on a silicon surface with a positional precision of 50 nm using femtosecond laser ablation comprising a superposition of optical vector vortex and Gaussian beams. Such control and precision opens new opportunities for nano-printing of materials using techniques such as laser-induced forward transfer and in general broadens the scope of laser processing of materials.
RESUMEN
Strong field laser physics has primarily been concerned with controlling beams in time while keeping their spatial profiles invariant. In the case of high harmonic generation, the harmonic beam is the result of the coherent superposition of atomic dipole emissions. Therefore, fundamental beams can be tailored in space, and their spatial characteristics will be imparted onto the harmonics. Here we produce high harmonics using a space-varying polarized fundamental laser beam, which we refer to as a vector beam. By exploiting the natural evolution of a vector beam as it propagates, we convert the fundamental beam into high harmonic radiation at its focus where the polarization is primarily linear. This evolution results in circularly polarized high harmonics in the far field. Such beams will be important for ultrafast probing of magnetic materials.