Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Cell ; 35(10): 3686-3696, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37477936

RESUMEN

Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.


Asunto(s)
Arabidopsis , Synechocystis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Arabidopsis/metabolismo , Plastoquinona/metabolismo , Synechocystis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plastidios/metabolismo
2.
J Biol Chem ; 297(5): 101283, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34626646

RESUMEN

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mitocondrias , Oxigenasas de Función Mixta , Filogenia , Ubiquinona , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
3.
Plant Cell ; 30(12): 2910-2921, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429224

RESUMEN

Land plants possess the unique capacity to derive the benzenoid moiety of the vital respiratory cofactor, ubiquinone (coenzyme Q), from phenylpropanoid metabolism via ß-oxidation of p-coumarate to form 4-hydroxybenzoate. Approximately half of the ubiquinone in plants comes from this pathway; the origin of the rest remains enigmatic. In this study, Phe-[Ring-13C6] feeding assays and gene network reconstructions uncovered a connection between the biosynthesis of ubiquinone and that of flavonoids in Arabidopsis (Arabidopsis thaliana). Quantification of ubiquinone in Arabidopsis and tomato (Solanum lycopersicum) mutants in flavonoid biosynthesis pinpointed the corresponding metabolic branch-point as lying between flavanone-3-hydroxylase and flavonoid-3'-hydroxylase. Further isotopic labeling and chemical rescue experiments demonstrated that the B-ring of kaempferol is incorporated into ubiquinone. Moreover, heme-dependent peroxidase activities were shown to be responsible for the cleavage of B-ring of kaempferol to form 4-hydroxybenzoate. By contrast, kaempferol 3-ß-d-glucopyranoside, dihydrokaempferol, and naringenin were refractory to peroxidative cleavage. Collectively, these data indicate that kaempferol contributes to the biosynthesis of a vital respiratory cofactor, resulting in an extraordinary metabolic arrangement where a specialized metabolite serves as a precursor for a primary metabolite. Evidence is also provided that the ubiquinone content of tomato fruits can be manipulated via deregulation of flavonoid biosynthesis.


Asunto(s)
Quempferoles/metabolismo , Plantas/metabolismo , Ubiquinona/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Parabenos/metabolismo
4.
Biochem J ; 476(22): 3521-3532, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31688904

RESUMEN

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the ß-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the ß-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate ß-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the ß-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m-2 s-1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Coenzima A Ligasas/metabolismo , Peroxisomas/metabolismo , Ubiquinona/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Coenzima A Ligasas/genética , Regulación de la Expresión Génica de las Plantas , Estructura Molecular , Oxidación-Reducción , Peroxisomas/química , Peroxisomas/genética , Ubiquinona/biosíntesis , Ubiquinona/química
5.
Plant J ; 95(2): 358-370, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29742810

RESUMEN

The proteinogenic branched-chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant-prokaryote comparative genomics detected candidates for 3-methylglutaconyl-CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non-homologous N-terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein-fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3-hydroxymethylglutaryl-CoA into 3-methylglutaconyl-CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark-induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3-methylglutaconyl-CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Hidroliasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Técnicas de Silenciamiento del Gen , Hidroliasas/genética , Isoleucina/metabolismo , Leucina/metabolismo , Metabolismo , Oryza/enzimología , Oryza/metabolismo , Proteínas de Plantas/genética , Alineación de Secuencia , Valina/metabolismo
6.
Plant Cell ; 27(6): 1730-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26023160

RESUMEN

Mutation of Arabidopsis thaliana NAD(P)H DEHYDROGENASE C1 (NDC1; At5g08740) results in the accumulation of demethylphylloquinone, a late biosynthetic intermediate of vitamin K1. Gene coexpression and phylogenomics analyses showed that conserved functional associations occur between vitamin K biosynthesis and NDC1 homologs throughout the prokaryotic and eukaryotic lineages. Deletion of Synechocystis ndbB, which encodes for one such homolog, resulted in the same defects as those observed in the cyanobacterial demethylnaphthoquinone methyltransferase knockout. Chemical modeling and assay of purified demethylnaphthoquinone methyltransferase demonstrated that, by virtue of the strong electrophilic nature of S-adenosyl-l-methionine, the transmethylation of the demethylated precursor of vitamin K is strictly dependent on the reduced form of its naphthoquinone ring. NDC1 was shown to catalyze such a prerequisite reduction by using NADPH and demethylphylloquinone as substrates and flavine adenine dinucleotide as a cofactor. NDC1 displayed Michaelis-Menten kinetics and was markedly inhibited by dicumarol, a competitive inhibitor of naphthoquinone oxidoreductases. These data demonstrate that the reduction of the demethylnaphthoquinone ring represents an authentic step in the biosynthetic pathway of vitamin K, that this reaction is enzymatically driven, and that a selection pressure is operating to retain type II NAD(P)H dehydrogenases in this process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Synechocystis/metabolismo , Vitamina K 1/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Familia de Multigenes , NADH NADPH Oxidorreductasas/genética , Filogenia , Synechocystis/enzimología , Synechocystis/genética
7.
Phytochemistry ; 226: 114225, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032792

RESUMEN

The unprenylated benzoquinones 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone), 2-chloro-1,4-benzoquinone (CBQ), 2,6-dimethyl-1,4-benzoquinone (DMBQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMOBQ) were tested as putative antimetabolites of plastoquinone-9, a vital electron and proton carrier of oxygenic phototrophs. Duroquinone and CBQ were the most effective at inhibiting the growth of the cyanobacterium Synechocystis sp. PCC 6803 either in photomixotrophic or photoautotrophic conditions. Duroquinone, a close structural analog of the photosynthetic inhibitor methyl-plastoquinone-9, was found to possess genuine bactericidal activity towards Synechocystis at a concentration as low as 10 µM, while at the same concentration CBQ acted only as a mild bacteriostat. In contrast, only duroquinone displayed marked cytotoxicity in axenically-grown Arabidopsis, resulting in damages to photosystem II and hindered net CO2 assimilation. Metabolite profiling targeted to photosynthetic cofactors and pigments indicated that in Arabidopsis duroquinone does not directly inhibit plastoquinone-9 biosynthesis. Taken together, these data indicate that duroquinone offers prospects as an algicide and herbicide.


Asunto(s)
Fotosíntesis , Plastoquinona , Synechocystis , Plastoquinona/farmacología , Plastoquinona/química , Plastoquinona/metabolismo , Fotosíntesis/efectos de los fármacos , Synechocystis/efectos de los fármacos , Synechocystis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Estructura Molecular , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química
8.
Curr Opin Plant Biol ; 66: 102165, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026487

RESUMEN

Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.


Asunto(s)
Quempferoles , Ubiquinona , Quempferoles/metabolismo , Plantas/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
9.
Phytochemistry ; 186: 112738, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756238

RESUMEN

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and antioxidant in eukaryotes. The recent discovery that kaempferol serves as a precursor for ubiquinone's benzenoid moiety both challenges the conventional view of flavonoids as specialized metabolites, and offers new prospects for engineering ubiquinone in plants. Here, we present evidence that Arabidopsis thaliana mutants lacking kaempferol 3-O-rhamnosyltransferase (ugt78d1) and kaempferol 3-O-glucosyltransferase (ugt78d2) activities display increased de novo biosynthesis of ubiquinone and increased ubiquinone content. These data are congruent with the proposed model that unprotected C-3 hydroxyl of kaempferol triggers the oxidative release of its B-ring as 4-hydroxybenzoate, which in turn is incorporated into ubiquinone. Ubiquinone content in the ugt78d1/ugt78d2 double knockout represented 160% of wild-type level, matching that achieved via exogenous feeding of 4-hydroxybenzoate to wild-type plants. This suggests that 4-hydroxybenzoate is no longer limiting ubiquinone biosynthesis in the ugt78d1/ugt78d2 plants. Evidence is also shown that the glucosylation of 4-hydroxybenzoate as well as the conversion of the immediate precursor of kaempferol, dihydrokaempferol, into dihydroquercetin do not compete with ubiquinone biosynthesis in A. thaliana.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación , Quempferoles , Ubiquinona
10.
Mini Rev Med Chem ; 17(12): 1028-1038, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27337968

RESUMEN

BACKGROUND: Phylloquinone is a prenylated naphthoquinone that is synthesized exclusively by plants, green algae, and some species of cyanobacteria, where it serves as a vital electron carrier in photosystem I and as an electron acceptor for the formation of protein disulfide bonds. OBJECTIVE: In humans and other vertebrates, phylloquinone plays the role of a vitamin (vitamin K1) that is required for blood coagulation and bone and vascular metabolism. Phylloquinone from green leafy vegetables and vegetable oil represents the major dietary source of vitamin K for humans. METHOD: In recent years, reverse genetics and biochemical approaches using the model plant Arabidopsis thaliana have shown that phylloquinone biosynthesis in plants involves paralogous and multifunctional enzymes, a compartmentation of the corresponding pathway in plastids and peroxisomes, and trafficking of some biosynthetic intermediates within plastids themselves. Furthermore, phylloquinone biosynthetic intermediates create crucial metabolic branch-points with other plastid-synthesized metabolites such as chlorophylls, tocopherols and salicylate. RESULTS & CONCLUSION: This review presents an update on recent studies of the central role of plastids in the biosynthesis of phylloquinone, in particular on the discovery of novel enzymatic steps that are likely paradigms for phylloquinone and menaquinone (vitamin K2)-synthesizing organisms alike.


Asunto(s)
Vitamina K 1/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Cloroplastos/química , Cloroplastos/metabolismo , Cromatografía Líquida de Alta Presión , Cumarinas/química , Cumarinas/metabolismo , Cumarinas/farmacología , Cianobacterias/química , Cianobacterias/metabolismo , Humanos , Plantas/química , Plantas/metabolismo , Vitamina K 1/análisis , Vitamina K 1/farmacología
11.
Antiviral Res ; 92(2): 228-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21867731

RESUMEN

The recently emerged swine-origin H1N1 influenza A virus (IAV) caused a pandemic outbreak in 2009 with higher risk of severe disease among children and pregnant women in their third trimester (Van Kerkhove et al., 2011), and is continuing to be important seasonal IAV strain. Mice are commonly used in antiviral studies as models of influenza disease, which utilize morbidity and mortality to assess the efficacy of a test compound. Here, we investigated the utility of unrestrained plethysomography to quantify the lung function of IAV-infected BALB/c mice. Administration of a lethal dose (∼30X LD(50)) of pandemic H1N1 IAV resulted in a rapid decline in breath volume, as determined by a significant (P<0.001) decrease in the pressure associated with inspiration and expiration detected as early as 2 days after virus challenge. Severe disease was also accompanied by a significant (P<0.05) increase in breath time on 8 dpi. Plethysmography parameters correlated with weight loss and other parameters of disease such as gross pathology and the weight of the lung. Breath time was reduced in surviving mice challenged with a sublethal dose of virus as compared with normal controls, and is a predictive indicator of outcome in these mice. In antiviral studies, the use of plethysmography resulted in the detection of a clear and rapid treatment response, which was similar to other non-invasive parameters, such as weight change. Oseltamivir and ribavirin significantly (P<0.001) improved parameters of lung function, particularly mean breath volume, as early as 2 dpi and in a dose-dependent manner. Moreover, a combination of these two drugs further improved these parameters. Plethysmography provides a sensitive evaluation of lung function in IAV-infected mice in response to antiviral therapy.


Asunto(s)
Antivirales/administración & dosificación , Monitoreo de Drogas/métodos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/patología , Pletismografía/métodos , Animales , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Oseltamivir/administración & dosificación , Ribavirina/administración & dosificación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda