Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mol Biol Evol ; 37(11): 3258-3266, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520985

RESUMEN

The rate and spectrum of spontaneous mutations are critical parameters in basic and applied biology because they dictate the pace and character of genetic variation introduced into populations, which is a prerequisite for evolution. We use a mutation-accumulation approach to estimate mutation parameters from whole-genome sequence data from multiple genotypes from multiple populations of Daphnia magna, an ecological and evolutionary model system. We report extremely high base substitution mutation rates (µ-n,bs = 8.96 × 10-9/bp/generation [95% CI: 6.66-11.97 × 10-9/bp/generation] in the nuclear genome and µ-m,bs = 8.7 × 10-7/bp/generation [95% CI: 4.40-15.12 × 10-7/bp/generation] in the mtDNA), the highest of any eukaryote examined using this approach. Levels of intraspecific variation based on the range of estimates from the nine genotypes collected from three populations (Finland, Germany, and Israel) span 1 and 3 orders of magnitude, respectively, resulting in up to a ∼300-fold difference in rates among genomic partitions within the same lineage. In contrast, mutation spectra exhibit very consistent patterns across genotypes and populations, suggesting the mechanisms underlying the mutational process may be similar, even when the rates at which they occur differ. We discuss the implications of high levels of intraspecific variation in rates, the importance of estimating gene conversion rates using a mutation-accumulation approach, and the interacting factors influencing the evolution of mutation parameters. Our findings deepen our knowledge about mutation and provide both challenges to and support for current theories aimed at explaining the evolution of the mutation rate, as a trait, across taxa.


Asunto(s)
Daphnia/genética , Tasa de Mutación , Animales , Acumulación de Mutaciones , Secuenciación Completa del Genoma
2.
Mol Biol Evol ; 36(9): 1942-1954, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077327

RESUMEN

Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains-a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.


Asunto(s)
Daphnia/genética , Variación Genética , Repeticiones de Microsatélite , Tasa de Mutación , Animales , Femenino , Acumulación de Mutaciones
3.
BMC Ecol ; 19(1): 7, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709393

RESUMEN

BACKGROUND: A proposed mediator of trade-offs between survival and reproduction is oxidative stress resistance. Investments in reproduction are associated with increased oxidative stress that reduces lifespan. We used the bdelloid rotifer Adineta vaga to examine baseline patterns of survival, reproduction, and measures of oxidative stress, as well as how these patterns change in the face of treatments known to induce oxidative stress. RESULTS: We discovered that under standard laboratory conditions late-life mortality may be explained by increased levels of oxidative stress induced by reproduction. However, following exposure to the oxidizing agent ionizing radiation, survival was unaffected while reproduction was reduced. CONCLUSIONS: We suggest that under normal environmental conditions, reduced survival is mediated by endogenously generated oxidative stress induced by reproduction, and thus represents a cost of reproduction. Alternatively, the reduced reproduction evident under exogenously applied oxidative stress represents a cost of somatic maintenance. Biochemical analyses designed to assess levels of oxidative stress, oxidative stress resistance, and oxidative damage under normal and oxidizing conditions suggest that varying investments in enzymatic and non-enzymatic based oxidative stress resistance determine whether a cost of reproduction or a cost of somatic maintenance is observed.


Asunto(s)
Estrés Oxidativo , Rotíferos/fisiología , Animales , Longevidad , Reproducción
4.
BMC Complement Altern Med ; 19(1): 247, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488126

RESUMEN

BACKGROUND: With the current concern caused by drug resistant microorganisms, alternatives to traditional antimicrobials are increasingly necessary. Historical holistic treatments involving natural approaches are now of interest as a potential alternative. Many essential oils have antimicrobial properties with the ability to modify bacterial and fungal population dynamics in low concentrations. METHODS: In this study, bacterial and fungal growth in response to varying concentrations of arborvitae oil was assessed using spectrophotometric methods to obtain estimates of population growth parameters including carrying capacity (K) and intrinsic rate of growth (r). Estimates of these parameters were compared among doses within strains using general linear modeling. RESULTS: Results suggest the active component of the essential oil arborvitae is likely of hydrophilic nature and demonstrates the ability to influence both K and r during bacterial and fungal growth in a dose-dependent manner. Highly concentrated doses of arborvitae completely kill Escherichia coli and significantly inhibit Staphylococcus aureus, however these same doses have no effect on Pseudomonas aeruginosa. Accordingly, microdoses of arborvitae demonstrated the ability to inhibit population growth parameters in both prokaryotic and eukaryotic microorganisms. Specifically, K of E. coli, r of Candida auris, and both K and r of Candida albicans were significantly reduced in the presence of microdoses of arborvitae. CONCLUSIONS: Microdoses of essential oils have the ability to inhibit one or both population parameters in both prokaryotic and eukaryotic microorganisms. Some microorganisms appear to be more susceptible to this essential oil arborvitae than other microorganisms. The use of essential oils, such as arborvitae, as novel antimicrobials may prove useful when contending with the current epidemic of multidrug resistant pathogens.


Asunto(s)
Aceites Volátiles/farmacología , Thuja/química , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Aceites de Plantas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
5.
Am Nat ; 185(2): 243-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25616142

RESUMEN

Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.


Asunto(s)
Evolución Biológica , Interacción Gen-Ambiente , Mutación , Animales , Daphnia , Ambiente , Femenino
6.
BMC Evol Biol ; 14: 161, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056725

RESUMEN

BACKGROUND: The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. RESULTS: Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. CONCLUSIONS: Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.


Asunto(s)
Caenorhabditis elegans/fisiología , Especies Reactivas de Oxígeno/análisis , Envejecimiento/genética , Animales , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Aptitud Genética , Longevidad/genética , Oxidación-Reducción , Estrés Oxidativo , Reproducción
7.
Ecol Lett ; 15(8): 794-802, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22583985

RESUMEN

One route to genetic adaptation in a novel environment is the evolution of ecological generalisation. Yet, identifying the cost that a generalist pays for the increased breadth of tolerance has proven elusive. We integrate phenotypic assays with functional genomics to understand how tolerance to a salinity gradient evolves, and we test the relationship between the fitness cost of this generalisation and the cost of transcription that arises from evolved differences in patterns of gene expression. Our results suggest that a salt-tolerant genotype of Daphnia is characterised by constitutively expressed genes, which does not incur a loss of fitness or a cost of transcription relative to a salt-intolerant genotype in low saline environments. We find that many genes whose expression pattern evolved in response to salinity are also involved in the response to predators, suggesting that the cost of generalisation may be due to trade-offs along other environmental axes.


Asunto(s)
Evolución Biológica , Daphnia/genética , Regulación de la Expresión Génica , Adaptación Fisiológica , Animales , Daphnia/fisiología , Cadena Alimentaria , Genoma , Genotipo , Fenotipo , Salinidad
8.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849849

RESUMEN

The absence of functional BLM DNA helicase, a member of the RecQ family of helicases, is responsible for the rare human disorder Bloom Syndrome, which results in developmental abnormalities, DNA repair defects, genomic instability, and a predisposition to cancer. In Drosophila melanogaster, the orthologous Blm protein is essential during early development when the embryo is under the control of maternal gene products. We show that lack of functional maternal Blm during the syncytial cell cycles of Drosophila embryonic development results in severe nuclear defects and lethality. Amongst the small fraction of embryos from Blm mutant mothers that survive to adulthood, a prominent sex-bias favors the class that inherits less repetitive DNA content, which serves as an endogenous source of replication stress. This selection against repetitive DNA content reflects a role for Blm in facilitating replication through repetitive sequences during the rapid S-phases of syncytial cell cycles. During these syncytial cycles, Blm is not required for complex DNA double-strand break repair; however, the progeny sex-bias resulting from the absence of maternal Blm is exacerbated by repetitive DNA sequences and by the slowing of replication fork progression, suggesting that the essential role for Blm during this stage is to manage replication fork stress brought about by impediments to fork progression. Additionally, our data suggest that Blm is only required to manage this replication stress during embryonic development, and likely only during the early, rapid syncytial cell cycles, and not at later developmental stages. These results provide novel insights into Blm function throughout development.


Asunto(s)
RecQ Helicasas
9.
G3 (Bethesda) ; 8(11): 3481-3487, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30158321

RESUMEN

Understanding the context-dependence of spontaneous mutations is crucial to predicting evolutionary trajectories. In this experiment, the impact of genetic background and trait-type on mutational susceptibility was investigated. Mutant and non-mutant lines of six unique genotypes from two populations of Daphnia magna were phenotypically assayed using a common-garden experiment. Morphological, life-history, and behavioral traits were measured and estimates of the mutation parameters were generated. The mutation parameters varied between the populations and among genotypes, suggesting differential susceptibility to mutation depending upon genomic background. Traits also varied in their susceptibility to mutation with behavioral traits evolving more rapidly than life-history and morphological traits. These results may reflect the unique selection histories of these populations.


Asunto(s)
Daphnia/genética , Animales , Femenino , Genotipo , Masculino , Mutación , Fenotipo
10.
Sci Rep ; 8(1): 8442, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855497

RESUMEN

The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments.


Asunto(s)
Adaptación Fisiológica , Odonata/fisiología , Animales , Conducta Animal , Genotipo , Odonata/genética , Distribución de Poisson
11.
BMC Evol Biol ; 7: 21, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17300732

RESUMEN

BACKGROUND: Introductions of non-native species can significantly alter the selective environment for populations of native species, which can respond through phenotypic plasticity or genetic adaptation. We examined phenotypic and genetic responses of Daphnia populations to recent introductions of non-native fish to assess the relative roles of phenotypic plasticity versus genetic change in causing the observed patterns. The Daphnia community in alpine lakes throughout the Sierra Nevada of California (USA) is ideally suited for investigation of rapid adaptive evolution because there are multiple lakes with and without introduced fish predators. We conducted common-garden experiments involving presence or absence of chemical cues produced by fish and measured morphological and life-history traits in Daphnia melanica populations collected from lakes with contrasting fish stocking histories. The experiment allowed us to assess the degree of population differentiation due to fish predation and examine the contribution of adaptive plasticity in the response to predator introduction. RESULTS: Our results show reductions in egg number and body size of D. melanica in response to introduced fish. These phenotypic changes have a genetic basis but are partly due to a direct response to chemical cues from fish via adaptive phenotypic plasticity. Body size showed the largest phenotypic change, on the order of nine phenotypic standard deviations, with approximately 11% of the change explained by adaptive plasticity. Both evolutionary and plastic changes in body size and egg number occurred but no changes in the timing of reproduction were observed. CONCLUSION: Native Daphnia populations exposed to chemical cues produced by salmonid fish predators display adaptive plasticity for body size and fecundity. The magnitude of adaptive plasticity was insufficient to explain the total phenotypic change, so the realized change in phenotypic means in populations exposed to introduced fish may be the result of a combination of initial plasticity and subsequent genetic adaptation. Our results suggest that immediately following the introduction of fish predators, adaptive plasticity may reduce the impact of selection through "Baldwin/Bogert effects" by facilitating the movement of populations toward new fitness optima. Our study of the response of a native species to an introduced predator enhances our understanding of the conditions necessary for rapid adaptive evolution and the relationship between rapid evolution and adaptive phenotypic plasticity.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Daphnia/genética , Cadena Alimentaria , Oncorhynchus mykiss/fisiología , Animales , California , Tamaño de la Nidada , Daphnia/fisiología , Fertilidad , Variación Genética , Fenotipo
12.
BMC Evol Biol ; 7: 22, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17300733

RESUMEN

BACKGROUND: Introduced species can have profound effects on native species, communities, and ecosystems, and have caused extinctions or declines in native species globally. We examined the evolutionary response of native zooplankton populations to the introduction of non-native salmonids in alpine lakes in the Sierra Nevada of California, USA. We compared morphological and life-history traits in populations of Daphnia with a known history of introduced salmonids and populations that have no history of salmonid introductions. RESULTS: Our results show that Daphnia populations co-existing with fish have undergone rapid adaptive reductions in body size and in the timing of reproduction. Size-related traits decreased by up to 13 percent in response to introduced fish. Rates of evolutionary change are as high as 4,238 darwins (0.036 haldanes). CONCLUSION: Species introductions into aquatic habitats can dramatically alter the selective environment of native species leading to a rapid evolutionary response. Knowledge of the rates and limits of adaptation is an important component of understanding the long-term effects of alterations in the species composition of communities. We discuss the evolutionary consequences of species introductions and compare the rate of evolution observed in the Sierra Nevada Daphnia to published estimates of evolutionary change in ecological timescales.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Tamaño Corporal , Daphnia/genética , Cadena Alimentaria , Oncorhynchus mykiss/fisiología , Animales , California , Daphnia/fisiología , Variación Genética , Fenotipo
13.
PLoS One ; 9(1): e86208, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465962

RESUMEN

Defense of a limited resource, such as space or food, has recently been discovered in snakes and has been widely documented in lizards. Garter snakes (Thamnophis spp.) are historically considered generalist predators such that food is not a limiting resource. However, in this study we show that the common garter snake (Thamnophis sirtalis) and the aquatic garter snake (Thamnophis atratus) show a strong preference for amphibians as their primary food source at the Santa Lucia Preserve (SLP), Monterey County, California. This food preference forces these snake species at SLP to exploit aquatic habitats. Our principle goal was to investigate the aggressive behavior of T. sirtalis and the potential that this aggression displaces T. atratus from its preferred habitat. We found that when individuals from either species are alone, a 100% preference for aquatic or near aquatic habitat is observed. In contrast, when these species are together, T. sirtalis occupy the aquatic habitat and T. atratus occupy an area far removed from water. Thamnophis sirtalis often physically force T. atratus from the aquatic habitat through repeated biting and other displays of aggression.


Asunto(s)
Agresión , Conducta Animal , Colubridae/fisiología , Ecosistema , Animales , Conducta Alimentaria , Femenino , Masculino
14.
Genetics ; 193(2): 539-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23183667

RESUMEN

Understanding how genetic variation is generated and how selection shapes mutation rates over evolutionary time requires knowledge of the factors influencing mutation and its effects on quantitative traits. We explore the impact of two factors, genomic background and generation time, on deleterious mutation in Daphnia pulicaria, a cyclically parthenogenic aquatic microcrustacean, using parallel mutation-accumulation experiments. The deleterious mutational properties of life-history characters for individuals from two different populations, and for individuals maintained at two different generation times, were quantified and compared. Mutational properties varied between populations, especially for clutch size, suggesting that genomic background influences mutational properties for some characters. Generation time was found to have a greater effect on mutational properties, with higher per-generation deleterious mutation rates in lines with longer generation times. These results suggest that differences in genetic architecture among populations and species may be explained in part by demographic features that significantly influence generation time and therefore the rate of mutation.


Asunto(s)
Daphnia/genética , Genoma , Tasa de Mutación , Animales , Tamaño de la Nidada/genética , Evolución Molecular , Aptitud Genética , Población/genética , Reproducción/genética , Factores de Tiempo
15.
PLoS One ; 5(9): e12919, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20957119

RESUMEN

BACKGROUND: Horizontal gene transfer (HGT) plays a major role in speciation and evolution of bacteria and archaea by controlling gene distribution within an environment. However, information that links HGT to a natural community using relevant population-genetics parameters and spatial considerations is scarce. The Great Salt Lake (Utah, USA) provides an excellent model for studying HGT in the context of biogeography because it is a contiguous system with dispersal limitations due to a strong selective salinity gradient. We hypothesize that in spite of the barrier to phylogenetic dispersal, functional characteristics--in the form of HGT--expand beyond phylogenetic limitations due to selective pressure. METHODOLOGY AND RESULTS: To assay the functional genes and microorganisms throughout the GSL, we used a 16S rRNA oligonucleotide microarray (Phylochip) and a functional gene array (GeoChip) to measure biogeographic patterns of nine microbial communities. We found a significant difference in biogeography based on microarray analyses when comparing Sørensen similarity values for presence/absence of function and phylogeny (Student's t-test; p = 0.005). CONCLUSION AND SIGNIFICANCE: Biogeographic patterns exhibit behavior associated with horizontal gene transfer in that informational genes (16S rRNA) have a lower similarity than functional genes, and functional similarity is positively correlated with lake-wide selective pressure. Specifically, high concentrations of chromium throughout GSL correspond to an average similarity of chromium resistance genes that is 22% higher than taxonomic similarity. This suggests active HGT may be measured at the population level in microbial communities and these biogeographic patterns may serve as a model to study bacteria adaptation and speciation.


Asunto(s)
Bacterias/genética , Transferencia de Gen Horizontal , Cloruro de Sodio/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Utah , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda