Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Cell ; 81(2): 293-303.e4, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33326748

RESUMEN

Ribosome assembly is catalyzed by numerous trans-acting factors and coupled with irreversible pre-rRNA processing, driving the pathway toward mature ribosomal subunits. One decisive step early in this progression is removal of the 5' external transcribed spacer (5'-ETS), an RNA extension at the 18S rRNA that is integrated into the huge 90S pre-ribosome structure. Upon endo-nucleolytic cleavage at an internal site, A1, the 5'-ETS is separated from the 18S rRNA and degraded. Here we present biochemical and cryo-electron microscopy analyses that depict the RNA exosome, a major 3'-5' exoribonuclease complex, in a super-complex with the 90S pre-ribosome. The exosome is docked to the 90S through its co-factor Mtr4 helicase, a processive RNA duplex-dismantling helicase, which strategically positions the exosome at the base of 5'-ETS helices H9-H9', which are dislodged in our 90S-exosome structures. These findings suggest a direct role of the exosome in structural remodeling of the 90S pre-ribosome to drive eukaryotic ribosome synthesis.


Asunto(s)
ARN Helicasas DEAD-box/química , Endorribonucleasas/química , Exonucleasas/química , Complejo Multienzimático de Ribonucleasas del Exosoma/ultraestructura , ARN Ribosómico 18S/química , Ribosomas/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad del ARN , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 75(6): 1256-1269.e7, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31378463

RESUMEN

Eukaryotic ribosome biogenesis involves RNA folding and processing that depend on assembly factors and small nucleolar RNAs (snoRNAs). The 90S (SSU-processome) is the earliest pre-ribosome structurally analyzed, which was suggested to assemble stepwise along the growing pre-rRNA from 5' > 3', but this directionality may not be accurate. Here, by analyzing the structure of a series of 90S assembly intermediates from Chaetomium thermophilum, we discover a reverse order of 18S rRNA subdomain incorporation. Large parts of the 18S rRNA 3' and central domains assemble first into the 90S before the 5' domain is integrated. This final incorporation depends on a contact between a heterotrimer Enp2-Bfr2-Lcp5 recruited to the flexible 5' domain and Kre33, which reconstitutes the Kre33-Enp-Brf2-Lcp5 module on the compacted 90S. Keeping the 5' domain temporarily segregated from the 90S scaffold could provide extra time to complete the multifaceted 5' domain folding, which depends on a distinct set of snoRNAs and processing factors.


Asunto(s)
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Conformación de Ácido Nucleico , ARN de Hongos/metabolismo , ARN Ribosómico 18S/metabolismo , Ribosomas/metabolismo , Chaetomium/genética , Proteínas Fúngicas/genética , ARN de Hongos/genética , ARN Ribosómico 18S/genética , Ribosomas/genética
3.
EMBO Rep ; 24(7): e56910, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37129998

RESUMEN

Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.


Asunto(s)
ARN Ribosómico , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/genética , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , ADN Helicasas/metabolismo , Unión Proteica , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO Rep ; 24(12): e57984, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37921038

RESUMEN

The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Nucleares/metabolismo , Rotación , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/genética
5.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321656

RESUMEN

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Proteínas de Saccharomyces cerevisiae , Humanos , Quinasa de la Caseína I/análisis , Quinasa de la Caseína I/metabolismo , Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 50(20): 11916-11923, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36263816

RESUMEN

The transition of the 90S to the pre-40S pre-ribosome is a decisive step in eukaryotic small subunit biogenesis leading to a first pre-40S intermediate (state Dis-C or primordial pre-40S), where the U3 snoRNA keeps the nascent 18S rRNA locally immature. We in vitro reconstitute the ATP-dependent U3 release from this particle, catalyzed by the helicase Dhr1, and follow this process by cryo-EM revealing two successive pre-40S intermediates, Dis-D and Dis-E. The latter has lost not only U3 but all residual 90S factors including the GTPase Bms1. In vitro remodeling likewise induced the formation of the central pseudoknot, a universally conserved tertiary RNA structure that comprises the core of the small subunit decoding center. Thus, we could structurally reveal a key tertiary RNA folding step that is essential to form the active 40S subunit.


Asunto(s)
Precursores del ARN , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Subunidades Ribosómicas Pequeñas de Eucariotas , Precursores del ARN/genética , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Conformación de Ácido Nucleico , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
7.
Pestic Biochem Physiol ; 199: 105778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458685

RESUMEN

With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.


Asunto(s)
Azadirachta , Limoninas , Azadirachta/química , Azadirachta/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteómica , Limoninas/farmacología
8.
J Neurosci ; 42(41): 7744-7756, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36414010

RESUMEN

The midbrain periaqueductal gray (PAG) plays a central role in pain modulation via descending pathways. Opioids and cannabinoids are thought to activate these descending pathways by relieving intrinsic GABAergic inhibition of PAG neurons which project to the rostroventromedial medulla (RVM), a process known as disinhibition. However, the PAG also receives descending extrinsic GABAergic inputs from the central nucleus of the amygdala (CeA) which are thought to inhibit PAG GABAergic interneurons. It remains unclear how opioids and cannabinoids act at these different synapses to control descending analgesic pathways. We used optogenetics, tract tracing and electrophysiology to identify the circuitry underlying opioid and cannabinoid actions within the PAG of male and female rats. It was observed that both RVM-projection and nonprojection PAG neurons received intrinsic-PAG and extrinsic-CeA synaptic inputs, which were predominantly GABAergic. Opioids acted via presynaptic µ-receptors to suppress both intrinsic and extrinsic GABAergic inputs onto all PAG neurons, although this inhibition was greater in RVM-projection neurons. By contrast, cannabinoids acted via presynaptic CB1 receptors to exclusively suppress the direct descending GABAergic input from the CeA onto RVM-projection PAG neurons. These findings indicate the CeA controls PAG output neurons which project to the RVM via parallel direct and indirect GABAergic pathways. While µ-opioids indiscriminately inhibit GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate the descending control of analgesia from the PAG.SIGNIFICANCE STATEMENT The disinhibition hypothesis of analgesia states that opioids activate the midbrain periaqueductal gray (PAG) descending pathway by relieving the tonic inhibition of projection neurons from GABAergic interneurons. However, the PAG also receives extrinsic GABAergic inputs and is the locus of action of cannabinoid analgesics. Here, we show the relative sensitivity of GABAergic synapses to opioids and cannabinoids within the PAG depends on both the origin of presynaptic inputs and their postsynaptic targets. While opioids indiscriminately inhibit all GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG descending projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate PAG descending outputs.


Asunto(s)
Cannabinoides , Sustancia Gris Periacueductal , Masculino , Femenino , Ratas , Animales , Sustancia Gris Periacueductal/metabolismo , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Cannabinoides/farmacología , Cannabinoides/metabolismo , Dolor/metabolismo , Bulbo Raquídeo/metabolismo , Analgésicos
9.
Microb Ecol ; 87(1): 11, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060022

RESUMEN

In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.


Asunto(s)
Ascomicetos , Respuesta al Choque por Frío , Proteómica , Microbiología del Suelo , Suelo , Regiones Antárticas , Frío
10.
Environ Microbiol ; 24(4): 1849-1864, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34528369

RESUMEN

Proteome changes can be used as an instrument to measure the effects of climate change, predict the possible future state of an ecosystem and the direction in which is headed. In this study, proteomic and gene ontology functional enrichment analysis of six Pseudogymnoascus spp. isolated from various global biogeographical regions were carried out to determine their response to heat stress. In total, 2122 proteins were identified with high confidence. Comparative quantitative analysis showed that changes in proteome profiles varied greatly between isolates from different biogeographical regions. Although the identities of the proteins that changed varied between the different regions, the functions they governed were similar. Gene ontology analysis showed enrichment of proteins involved in multiple protective mechanisms, including the modulation of protein homeostasis, regulation of energy production and activation of DNA damage and repair pathways. Our proteomic analysis did not show any clear relationship between protein changes and the strains' biogeographical origins.


Asunto(s)
Proteoma , Proteómica , Daño del ADN , Ecosistema , Respuesta al Choque Térmico/genética , Proteoma/genética , Proteoma/metabolismo , Proteostasis
11.
J Neurosci ; 40(31): 5894-5907, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601247

RESUMEN

The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Lóbulo Frontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico , Animales , Proteínas Quinasas Dependientes de AMP Cíclico , Endorfinas/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas , Técnicas de Placa-Clamp , Transducción de Señal/efectos de los fármacos
12.
J Biomed Sci ; 28(1): 1, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388061

RESUMEN

BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection. METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches. RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages. CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.


Asunto(s)
Candida glabrata/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Transcriptoma , Acetatos/metabolismo , Perfilación de la Expresión Génica
13.
Foot Ankle Surg ; 25(2): 132-136, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29409296

RESUMEN

BACKGROUND: This study reports the outcome of a plating system for arthrodesis of the first metatarsophalangeal joint (1st MTPJ) that incorporates a lag compression screw within a low profile titanium plate with a predetermined contour. This is the first report of the outcomes of this implant from a non-affiliated centre. PATIENT AND METHODS: This is a prospective cohort study of 40 consecutive primary 1st MTPJ arthrodesis procedures. The mean age of the cohort was 56 years (range, 20-74 years). The diagnosis was hallux rigidus in 31 patients and inflammatory arthropathy in 7 patients. RESULTS: All patients achieved clinical union at 6 weeks and radiological union was confirmed on plain radiographs between 6-16 weeks. One case of hardware removal was reported. CONCLUSION: The cohort achieved consistently satisfactory results with a reliable and reproducible MTPJ position and a 100% union rate. There was a low rate of hardware removal. LEVEL OF EVIDENCE: Level IV evidence. Prospective cohort study.


Asunto(s)
Artrodesis/métodos , Placas Óseas , Tornillos Óseos , Hallux Rigidus/cirugía , Hallux Valgus/cirugía , Articulación Metatarsofalángica/cirugía , Radiografía/métodos , Adulto , Anciano , Femenino , Estudios de Seguimiento , Hallux Rigidus/diagnóstico , Hallux Valgus/diagnóstico , Humanos , Masculino , Articulación Metatarsofalángica/diagnóstico por imagen , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
14.
J Physiol ; 595(1): 165-178, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27461371

RESUMEN

KEY POINTS: The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. ABSTRACT: The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca2+ , and when release probability was reduced by lowering Ca2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca2+ . Lowering external Ca2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca2+ . The low affinity GABAA receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG.


Asunto(s)
Endocannabinoides/fisiología , Sustancia Gris Periacueductal/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calcio/fisiología , Femenino , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Sustancia Gris Periacueductal/efectos de los fármacos , Ácidos Fosfínicos/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/fisiología
15.
Cereb Cortex ; 26(12): 4524-4539, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26405054

RESUMEN

The orbitofrontal cortex (OFC) integrates information about the environment to guide decision-making. Glutamatergic synaptic transmission mediated through N-methyl-d-aspartate receptors is required for optimal functioning of the OFC. Additionally, abnormal dopamine signaling in this region has been implicated in impulsive behavior and poor cognitive flexibility. Yet, despite the high prevalence of psychostimulants prescribed for attention deficit/hyperactivity disorder, there is little information on how dopamine modulates synaptic transmission in the juvenile or the adult OFC. Using whole-cell patch-clamp recordings in OFC pyramidal neurons, we demonstrated that while dopamine or selective D2-like receptor (D2R) agonists suppress excitatory synaptic transmission of juvenile or adult lateral OFC neurons; in juvenile lateral OFC neurons, higher concentrations of dopamine can target dopamine receptors that couple to a phospholipase C (PLC) signaling pathway to enhance excitatory synaptic transmission. Interfering with the formation of a putative D1R-D2R interaction blocked the potentiation of excitatory synaptic transmission. Furthermore, targeting the putative D1R-D2R complex with a biased agonist, SKF83959, not only enhanced excitatory synaptic transmission in a PLC-dependent manner, but also improved the performance of juvenile rats on a reversal-learning task. Our results demonstrate that dopamine signaling in the lateral OFC differs between juveniles and adults, through potential crosstalk between dopamine receptor subtypes.


Asunto(s)
Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizaje Inverso/fisiología , Animales , Catéteres de Permanencia , Cognición/efectos de los fármacos , Cognición/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Función Ejecutiva/efectos de los fármacos , Función Ejecutiva/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Neurotransmisores , Técnicas de Placa-Clamp , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D2/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Aprendizaje Inverso/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
16.
Med Phys ; 51(2): 1364-1382, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37427751

RESUMEN

BACKGROUND: The adoption of four-dimensional cone beam computed tomography (4DCBCT) for image-guided lung cancer radiotherapy is increasing, especially for hypofractionated treatments. However, the drawbacks of 4DCBCT include long scan times (∼240 s), inconsistent image quality, higher imaging dose than necessary, and streaking artifacts. With the emergence of linear accelerators that can acquire 4DCBCT scans in a short period of time (9.2 s) there is a need to examine the impact that these very fast gantry rotations have on 4DCBCT image quality. PURPOSE: This study investigates the impact of gantry velocity and angular separation between x-ray projections on image quality and its implication for fast low-dose 4DCBCT with emerging systems, such as the Varian Halcyon that provide fast gantry rotation and imaging. Large and uneven angular separation between x-ray projections is known to reduce 4DCBCT image quality through increased streaking artifacts. However, it is not known when angular separation starts degrading image quality. The study assesses the impact of constant and adaptive gantry velocity and determines the level when angular gaps impair image quality using state-of-the-art reconstruction methods. METHODS: This study considers fast low-dose 4DCBCT acquisitions (60-80 s, 200-projection scans). To assess the impact of adaptive gantry rotations, the angular position of x-ray projections from adaptive 4DCBCT acquisitions from a 30-patient clinical trial were analyzed (referred to as patient angular gaps). To assess the impact of angular gaps, variable and static angular gaps (20°, 30°, 40°) were introduced into evenly separated 200 projections (ideal angular separation). To simulate fast gantry rotations, which are on emerging linacs, constant gantry velocity acquisitions (9.2 s, 60 s, 120 s, 240 s) were simulated by sampling x-ray projections at constant intervals using the patient breathing traces from the ADAPT clinical trial (ACTRN12618001440213). The 4D Extended Cardiac-Torso (XCAT) digital phantom was used to simulate projections to remove patient-specific image quality variables. Image reconstruction was performed using Feldkamp-Davis-Kress (FDK), McKinnon-Bates (MKB), and Motion-Compensated-MKB (MCMKB) algorithms. Image quality was assessed using Structural Similarity-Index-Measure (SSIM), Contrast-to-Noise-Ratio (CNR), Signal-to-Noise-Ratio (SNR), Tissue-Interface-Width-Diaphragm (TIW-D), and Tissue-Interface-Width-Tumor (TIW-T). RESULTS: Patient angular gaps and variable angular gap reconstructions produced similar results to ideal angular separation reconstructions, while static angular gap reconstructions produced lower image quality metrics. For MCMKB-reconstructions, average patient angular gaps produced SSIM-0.98, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm, static angular gap 40° produced SSIM-0.92, CNR-6.8, SNR-6.7, TIW-D-5.7 mm, and TIW-T-5.9 mm and ideal produced SSIM-1.00, CNR-13.6, SNR-34.8, TIW-D-1.5 mm, and TIW-T-2.0 mm. All constant gantry velocity reconstructions produced lower image quality metrics than ideal angular separation reconstructions regardless of the acquisition time. Motion compensated reconstruction (MCMKB) produced the highest contrast images with low streaking artifacts. CONCLUSION: Very fast 4DCBCT scans can be acquired provided that the entire scan range is adaptively sampled, and motion-compensated reconstruction is performed. Importantly, the angular separation between x-ray projections within each individual respiratory bin had minimal effect on the image quality of fast low-dose 4DCBCT imaging. The results will assist the development of future 4DCBCT acquisition protocols that can now be achieved in very short time frames with emerging linear accelerators.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Técnicas de Imagen Sincronizada Respiratorias , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Técnicas de Imagen Sincronizada Respiratorias/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
17.
Phytother Res ; 27(4): 595-601, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22718574

RESUMEN

Lycopene, a red pigmented carotenoid present in many fruits and vegetables such as tomatoes, has been associated with the reduced risk of breast cancer. This study sought to identify proteins modulated by lycopene during cell proliferation of the breast cancer cell line MCF-7 to gain an understanding into its mechanism of action. MCF-7 breast cancer cells and MCF-10 normal breast cells were treated with 0, 2, 4, 6, 8, and 10 µM of lycopene for 72 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium reduction assay was used to measure cell proliferation and two-dimensional fluorescence difference gel electrophoresis to assess the changes in protein expression, which were identified using MALDI-ToF/ToF (matrix-assisted laser desorption ionization tandem time-of-flight) and Mascot database search. MTT and cell proliferation assays showed that lycopene selectively inhibited the growth of MCF-7 but not MCF-10 cells. Difference gel electrophoresis analysis revealed that proteins in the MCF-7 cells respond differently to lycopene compared with the MCF-10 cells. Lycopene altered the expression levels of proteins such as Cytokeratin 8/18 (CK8/18), CK19 and their post translational status. We have shown that lycopene inhibits cell proliferation in MCF-7 human breast cancer cells but not in the MCF-10 mammary epithelial cells. Lycopene was shown to modulate cell cycle proteins such as beta tubulin, CK8/18, CK19 and heat shock proteins.


Asunto(s)
Carotenoides/farmacología , Proliferación Celular/efectos de los fármacos , Proteoma/análisis , Electroforesis en Gel Bidimensional , Femenino , Humanos , Queratinas/metabolismo , Licopeno , Células MCF-7 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
PLoS Negl Trop Dis ; 17(9): e0011604, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721966

RESUMEN

Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase ß2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2ß was observed in adult permethrin resistant strain and tubulin ß chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.


Asunto(s)
Aedes , Insecticidas , Animales , Permetrina/farmacología , Insecticidas/farmacología , Temefós/farmacología , Resistencia a los Insecticidas/genética , Malasia , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Aedes/genética , Mosquitos Vectores , Larva
19.
Foot Ankle Int ; 44(3): 178-191, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788732

RESUMEN

BACKGROUND: Fourth-generation minimally invasive surgery (MIS) includes the multiplanar rotational deformity correction achieved through manipulation of an extra-articular distal first metatarsal osteotomy that is held with rigid fixation using 2 fully threaded screws, of which one must be bicortical to provide rotational and biomechanical stability. The aim of this study is to report the clinical and radiologic outcomes of an evolved fourth-generation MIS hallux valgus technique. METHODS: A prospective single-surgeon series of consecutive patients undergoing fourth-generation MIS was performed using a distal transverse osteotomy with a minimum 12-month follow-up. The primary outcome was the Manchester-Oxford Foot Questionnaire (MOXFQ), a validated clinical patient-reported outcome measure (PROM). Secondary outcomes included radiographic deformity correction, clinical assessment, and EuroQol-5D-5L PROMs. RESULTS: Between September 2019 and June 2021, 50 feet underwent fourth-generation MIS. The mean age was 55.8±15.3 years with a mean follow-up of 1.4 years. Preoperative and minimum 12-month primary outcome data were available for 100% of feet. There was a significant improvement in all MOXFQ domain scores, with the index domain improving from 53.4 to 13.1 (P < .001). There was a significant improvement (P < .001) in hallux valgus angle (32.7 to 7.9 degrees), intermetatarsal angle (14.0 to 4.2 degrees) and distal metatarsal articular angle (18.5 to 5.6 degrees). There was a significant improvement in general health-related quality of life EQ-5D-5L index and EQ-VAS scores (P < .05). CONCLUSION: The fourth-generation MIS technique is a safe and effective approach to hallux valgus deformity correction with significant improvement in clinical and radiographic outcomes. LEVEL OF EVIDENCE: Level IV, prospective case series.


Asunto(s)
Juanete , Hallux Valgus , Huesos Metatarsianos , Humanos , Adulto , Persona de Mediana Edad , Anciano , Hallux Valgus/cirugía , Calidad de Vida , Pie , Osteotomía/métodos , Huesos Metatarsianos/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Resultado del Tratamiento
20.
Mol Immunol ; 155: 44-57, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696839

RESUMEN

INTRODUCTION: Goat's milk thought to be a good substitute for cow's milk protein allergic (CMPA) individuals. However, there is growing evidence that their proteins have cross-reactivities with cow's milk allergens. This study aimed to profile and compare milk proteins from different goat breeds that have cross-reactivity to cow's milk allergens. METHODOLOGY: Proteomics was used to compare protein extracts of skim milk from Saanen, Jamnapari, and Toggenburg. Cow's milk was used as a control. IgE-immunoblotting and mass spectrometry were used to compare and identify proteins that cross-reacted with serum IgE from CMPA patients (n = 10). RESULTS: The analysis of IgE-reactive proteins revealed that the protein spots identified with high confidence were proteins homologous to common cow's milk allergens such as α-S1-casein (αS1-CN), ß-casein (ß-CN), κ-casein (κ-CN), and beta-lactoglobulin (ß-LG). Jamnapari's milk proteins were found to cross-react with four major milk allergens: α-S1-CN, ß-CN, κ-CN, and ß-LG. Saanen goat's milk proteins, on the other hand, cross-reacted with two major milk allergens, α-S1-CN and ß-LG, whereas Toggenburg goat's milk proteins only react with one of the major milk allergens, κ-CN. CONCLUSION: These findings may help in the development of hypoallergenic goat milk through cross-breeding strategies of goat breeds with lower allergenic milk protein contents.


Asunto(s)
Hipersensibilidad a la Leche , Proteínas de la Leche , Animales , Bovinos , Femenino , Leche , Alérgenos , Cabras , Proteómica , Inmunoglobulina E , Caseínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda