Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 17(7): e3000085, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31295257

RESUMEN

Signaling cross talks between auxin, a regulator of plant development, and Ca2+, a universal second messenger, have been proposed to modulate developmental plasticity in plants. However, the underlying molecular mechanisms are largely unknown. Here, we report that in Arabidopsis roots, auxin elicits specific Ca2+ signaling patterns that spatially coincide with the expression pattern of auxin-regulated genes. We have identified the single EF-hand Ca2+-binding protein Ca2+-dependent modulator of ICR1 (CMI1) as an interactor of the Rho of plants (ROP) effector interactor of constitutively active ROP (ICR1). CMI1 expression is directly up-regulated by auxin, whereas the loss of function of CMI1 associates with the repression of auxin-induced Ca2+ increases in the lateral root cap and vasculature, indicating that CMI1 represses early auxin responses. In agreement, cmi1 mutants display an increased auxin response including shorter primary roots, longer root hairs, longer hypocotyls, and altered lateral root formation. Binding to ICR1 affects subcellular localization of CMI1 and its function. The interaction between CMI1 and ICR1 is Ca2+-dependent and involves a conserved hydrophobic pocket in CMI1 and calmodulin binding-like domain in ICR1. Remarkably, CMI1 is monomeric in solution and in vitro changes its secondary structure at cellular resting Ca2+ concentrations ranging between 10-9 and 10-8 M. Hence, CMI1 is a Ca2+-dependent transducer of auxin-regulated gene expression, which can function in a cell-specific fashion at steady-state as well as at elevated cellular Ca2+ levels to regulate auxin responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Proteínas Portadoras/genética , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Unión Proteica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
2.
Development ; 143(18): 3226-9, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27624827

RESUMEN

The plant hormone auxin triggers complex growth and developmental processes. Its underlying molecular mechanism of action facilitates rapid switching between transcriptional repression and gene activation through the auxin-dependent degradation of transcriptional repressors. The nuclear auxin signaling pathway consists of a small number of core components. However, in most plants each component is represented by a large gene family. The modular construction of the pathway can thus produce diverse transcriptional outputs depending on the cellular and environmental context. Here, and in the accompanying poster, we outline the current model for TIR1/AFB-dependent auxin signaling with an emphasis on recent studies.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Transducción de Señal/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Development ; 139(6): 1115-24, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318226

RESUMEN

Auxin has a fundamental role throughout the life cycle of land plants. Previous studies showed that the tomato cyclophilin DIAGEOTROPICA (DGT) promotes auxin response, but its specific role in auxin signaling remains unknown. We sequenced candidate genes in auxin-insensitive mutants of Physcomitrella patens and identified mutations in highly conserved regions of the moss ortholog of tomato DGT. As P. patens and tomato diverged from a common ancestor more than 500 million years ago, this result suggests a conserved and central role for DGT in auxin signaling in land plants. In this study we characterize the P. patens dgt (Ppdgt) mutants and show that their response to auxin is altered, affecting the chloronema-to-caulonema transition and the development of rhizoids. To gain an understanding of PpDGT function we tested its interactions with the TIR1/AFB-dependent auxin signaling pathway. We did not observe a clear effect of the Ppdgt mutation on the degradation of Aux/IAA proteins. However, the induction of several auxin-regulated genes was reduced. Genetic analysis revealed that dgt can suppress the phenotype conferred by overexpression of an AFB auxin receptor. Our results indicate that the DGT protein affects auxin-induced transcription and has a conserved function in auxin regulation in land plants.


Asunto(s)
Bryopsida/genética , Ciclofilinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Secuencia de Bases , Bryopsida/embriología , Ciclofilinas/genética , Evolución Molecular , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Transcripción Genética
4.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014308

RESUMEN

A major challenge in plant biology is to understand how the plant hormone auxin regulates diverse transcriptional responses throughout development, in different environments, and in different species. The answer may lie in the specific complement of auxin signaling components in each cell. The balance between activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) is particularly important. It is unclear how this balance is achieved. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens , we have discovered a ∼500-million-year-old mechanism of class-B ARF protein level regulation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.

5.
Curr Biol ; 17(11): 947-52, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17493810

RESUMEN

ROP/RAC GTPases are master regulators of cell polarity in plants, implicated in the regulation of diverse signaling cascades including cytoskeleton organization, vesicle trafficking, and Ca(2+) gradients [1-8]. The involvement of ROPs in differentiation processes is yet unknown. Here we show the identification of a novel ROP/RAC effector, designated interactor of constitutive active ROPs 1 (ICR1), that interacts with GTP-bound ROPs. ICR1 knockdown or silencing leads to cell deformation and loss of root stem-cell population. Ectopic expression of ICR1 phenocopies activated ROPs, inducing cell deformation of leaf-epidermis-pavement and root-hair cells [3, 5, 6, 9]. ICR1 is comprised of coiled-coil domains and forms complexes with itself and the exocyst vesicle-tethering complex subunit SEC3 [10-13]. The ICR1-SEC3 complexes can interact with ROPs in vivo. Plants overexpressing a ROP- and SEC3-noninteracting ICR1 mutant have a wild-type phenotype. Taken together, our results show that ICR1 is a scaffold-mediating formation of protein complexes that are required for cell polarity, linking ROP/RAC GTPases with vesicle trafficking and differentiation.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Portadoras/fisiología , Polaridad Celular , Proteínas de Unión al GTP/metabolismo , Meristema/metabolismo , Vesículas Transportadoras/fisiología , Proteínas de Unión al GTP rac/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proteínas Fluorescentes Verdes/análisis , Meristema/citología , Mutación , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo
6.
Mol Biol Cell ; 16(4): 1913-27, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15703216

RESUMEN

Rho GTPases regulate the actin cytoskeleton, exocytosis, endocytosis, and other signaling cascades. Rhos are subdivided into four subfamilies designated Rho, Racs, Cdc42, and a plant-specific group designated RACs/Rops. This research demonstrates that ectopic expression of a constitutive active Arabidopsis RAC, AtRAC10, disrupts actin cytoskeleton organization and membrane cycling. We created transgenic plants expressing either wild-type or constitutive active AtRAC10 fused to the green fluorescent protein. The activated AtRAC10 induced deformation of root hairs and leaf epidermal cells and was primarily localized in Triton X-100-insoluble fractions of the plasma membrane. Actin cytoskeleton reorganization was revealed by creating double transgenic plants expressing activated AtRAC10 and the actin marker YFP-Talin. Plants were further analyzed by membrane staining with N-[3-triethylammoniumpropyl]-4-[p-diethylaminophenylhexatrienyl] pyridinium dibromide (FM4-64) under different treatments, including the protein trafficking inhibitor brefeldin A or the actin-depolymeryzing agents latrunculin-B (Lat-B) and cytochalasin-D (CD). After drug treatments, activated AtRAC10 did not accumulate in brefeldin A compartments, but rather reduced their number and colocalized with FM4-64-labeled membranes in large intracellular vesicles. Furthermore, endocytosis was compromised in root hairs of activated AtRAC10 transgenic plants. FM4-64 was endocytosed in nontransgenic root hairs treated with the actin-stabilizing drug jasplakinolide. These findings suggest complex regulation of membrane cycling by plant RACs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Proteínas de Unión al GTP rac/metabolismo , Actinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Forma de la Célula , Vesículas Citoplasmáticas/metabolismo , Activación Enzimática , Exocitosis , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Unión al GTP rac/genética
7.
Elife ; 52016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27247276

RESUMEN

The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs.


Asunto(s)
Bryopsida/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
8.
Curr Biol ; 20(21): 1907-12, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20951049

RESUMEN

Auxin regulates most aspects of flowering-plant growth and development, including key developmental innovations that evolved within the vascular plant lineage after diverging from a bryophyte-like ancestor nearly 500 million years ago. Recent studies in Arabidopsis indicate that auxin acts by directly binding the TIR1 subunit of the SCF(TIR1) ubiquitin ligase; this binding results in degradation of the Aux/IAA transcriptional repressors and de-repression of auxin-responsive genes. Little is known, however, about the mechanism of auxin action in other plants. To characterize auxin signaling in a nonflowering plant, we utilized the genetically tractable moss Physcomitrella patens. We used a candidate-gene approach to show that previously identified auxin-resistant mutants of P. patens harbor mutations in Aux/IAA genes. Furthermore, we show that the moss Aux/IAA proteins interact with Arabidopsis TIR1 moss homologs called PpAFB and that a reduction in PpAFB levels results in a phenotype similar to that of the auxin-resistant mutants. Our results indicate that the molecular mechanism of auxin perception is conserved in land plants despite vast differences in the role auxin plays in different plant lineages.


Asunto(s)
Bryopsida/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Proteínas de Plantas/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Bryopsida/efectos de los fármacos , Bryopsida/genética , Secuencia Conservada , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
9.
Plant Signal Behav ; 3(1): 41-3, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19704766

RESUMEN

ROPs/RACs are the only known signaling Ras superfamily small GTPases in plants. As such they have been suggested to function as central regulators of diverse signaling cascades. The ROP/RAC signaling networks are largely unknown, however, because only few of their effector proteins have been identified. In a paper that was published in the June 5, 2007 issue of Current Biology we described the identification of a novel ROP/RAC effector designated ICR1 (Interactor of Constitutive active ROPs 1). We demonstrated that ICR1 functions as a scaffold that interacts with diverse but specific group of proteins including SEC3 subunit of the exocyst vesicle tethering complex. ICR1-SEC3 complexes can interact with ROPs in vivo and are thereby recruited to the plasma membrane. ICR1 knockdown or silencing leads to cell deformation and loss of the root stem cells population, and ectopic expression of ICR1 phenocopies activated ROPs/RACs. ICR1 presents a new paradigm in ROP/RAC signaling and integrates mechanisms regulating cell form and pattern formation at the whole plant level.

10.
Plant J ; 46(6): 934-47, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16805728

RESUMEN

Plant ROPs (or RACs) are soluble Ras-related small GTPases that are attached to cell membranes by virtue of the post-translational lipid modifications of prenylation and S-acylation. ROPs (RACs) are subdivided into two major subgroups called type-I and type-II. Whereas type-I ROPs terminate with a conserved CaaL box and undergo prenylation, type-II ROPs undergo S-acylation on two or three C-terminal cysteines. In the present work we determined the sequence requirement for association of Arabidopsis type-II ROPs with the plasma membrane. We identified a conserved sequence motif, designated the GC-CG box, in which the modified cysteines are flanked by glycines. The GC-CG box cysteines are separated by five to six mostly non-polar residues. Deletion of this sequence or the introduction of mutations that change its nature disrupted the association of ROPs with the membrane. Mutations that changed the GC-CG box glycines to alanines also interfered with membrane association. Deletion of a polybasic domain proximal to the GC-CG box disrupted the plasma membrane association of AtROP10. A green fluorescent protein fusion protein containing the C-terminal 25 residues of AtROP10, including its polybasic domain and GC-CG box, was primarily associated with the plasma membrane but a similar fusion protein lacking the polybasic domain was exclusively localized in the soluble fraction. These data provide evidence for the minimal sequence required for plasma membrane association of type-II ROPs in Arabidopsis and other plant species.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Secuencia Conservada , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/genética , Estructura Terciaria de Proteína
11.
J Biol Chem ; 277(33): 29856-64, 2002 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-12039957

RESUMEN

Following prenylation, the proteins are subject to two prenyl-dependent modifications at their C-terminal end, which are required for their subcellular targeting. First, the three C-terminal residues of the CAAX box prenylation signaling motif are removed, which is followed by methylation of the free carboxyl group of the prenyl cysteine moiety. An Arabidopsis homologue of the yeast CAAX protease STE24 (AFC1) was cloned and expressed in rce1 Delta ste24 Delta mutant yeast to demonstrate functional complementation. The petunia calmodulin CaM53 is a prenylated protein terminating in a CTIL CAAX box. Coupled methylation proteolysis assays demonstrated the processing of CaM53 by AtSTE24. In addition, AtSTE24 promoted plasma membrane association of the GFP-Rac fusion protein, which terminates with a CLLM CAAX box. Interestingly, a plant homologue of the second and major CAAX protease in yeast and animal cells, RCE1, was not identified despite the availability of vast amounts of sequence data. Taken together, these data suggest that AtSTE24 may process several prenylated proteins in plant cells, unlike its yeast homologue, which processes only a-mating factor, and its mammalian homologue, for which prenyl-CAAX substrates have not been established. Transient expression of GFPAtSTE24 in leaf epidermal cells of Nicotiana benthamiana showed that AtSTE24 is exclusively localized in the endoplasmic reticulum, suggesting that prenylated proteins in plants are first targeted to the endoplasmic reticulum following their prenylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/enzimología , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Prenilación de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
Plant Cell ; 14(10): 2431-50, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12368496

RESUMEN

The RHO proteins, which regulate numerous signaling cascades, undergo prenylation, facilitating their interaction with membranes and with proteins called RHO.GDP dissociation inhibitors. It has been suggested that prenylation is required for RHO function. Eleven RHO-related proteins were identified in Arabidopsis. Eight of them are putatively prenylated. We show that targeting of the remaining three proteins, AtRAC7, AtRAC8, and AtRAC10, is prenylation independent, requires palmitoylation, and occurs by a cell-specific mechanism. AtRAC8 and AtRAC10 could not be prenylated by either farnesyltransferase or geranylgeranyltransferase I, whereas AtRAC7 could be prenylated by both enzymes in yeast. The association of AtRAC7 with the plasma membrane in plants did not require farnesyltransferase or a functional CaaX box. Recombinant AtRAC8 was palmitoylated in vitro, and inhibition of protein palmitoylation relieved the association of all three proteins with the plasma membrane. Interestingly, AtRAC8 and a constitutively active mutant, Atrac7mV(15), were not associated with the plasma membrane in root hair cells, whose elongation requires the localization of prenylated RHOs in the plasma membrane at the cell tip. Moreover, Atrac7mV(15) did not induce root hair deformation, unlike its prenylated homologs. Thus, AtRAC7, AtRAC8, and AtRAC10 may represent a group of proteins that have evolved to fulfill unique functions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al GTP rho/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Bacterias/genética , Membrana Celular/metabolismo , Clonación Molecular , Cisteína/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Palmitatos/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/genética , Prenilación de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteínas de Unión al GTP rho/metabolismo
13.
Proc Natl Acad Sci U S A ; 101(20): 7815-20, 2004 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15128936

RESUMEN

Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.


Asunto(s)
Flores/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Prenilación de Proteína/fisiología , Ácido Abscísico/metabolismo , Flores/enzimología , Flores/metabolismo , Homeostasis , Magnoliopsida/enzimología , Magnoliopsida/metabolismo , Meristema/enzimología , Meristema/metabolismo , Fenómenos Fisiológicos de las Plantas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda