Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Cutan Ocul Toxicol ; 39(3): 180-192, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32586141

RESUMEN

PURPOSE: OptiSafe is an in chemico test method that identifies potential eye irritants based on macromolecular damage following test chemical exposure. The OptiSafe protocol includes a prescreen assessment that identifies test chemicals that are outside the applicability domain of the test method and thus determines the optimal procedure. We assessed the usefulness and limitations of the OptiSafe test method for identifying chemicals not requiring classification for ocular irritation (i.e. bottom-up testing strategy). MATERIALS AND METHODS: Seventeen chemicals were selected by the lead laboratory and tested as an independent study. Ninety-five unique coded chemicals were selected by a validation management team to assess the intra- and interlaboratory reproducibility and accuracy of OptiSafe in a multilaboratory, three-phased validation study. Three laboratories (lead laboratory and two naïve laboratories) evaluated 35 chemicals, with the remaining 60 chemicals evaluated by the lead laboratory only. Test method performance was assessed by comparing classifications based on OptiSafe results to classifications based on available retrospective in vivo data, using both the EPA and GHS eye irritation hazard classification systems. No prospective in vivo testing was conducted. RESULTS: Phase I testing of five chemicals showed that the method could be transferred to naïve laboratories; within-lab reproducibility ranged from 93% to 100% for both classification systems. Thirty coded chemicals were evaluated in Phase II of the validation study to demonstrate both intra- and interlaboratory reproducibility. Intralaboratory reproducibility for both EPA and GHS classification systems for Phase II of the validation study ranged from 93% to 99%, while interlaboratory reproducibility was 91% for both systems. Test method accuracy for the EPA and GHS classification systems based on results from individual laboratories ranged from 82% to 88% and from 78% to 88%, respectively, among the three laboratories; false negative rates ranged from 0% to 7% (EPA) and 0% to 15% (GHS). When results across all three laboratories were combined based on the majority classification, test method accuracy and false negative rates were 89% and 0%, respectively, for both classification systems, while false positive rates were 25% and 23% for the EPA and GHS classification systems, respectively. Validation study Phase III evaluation of an additional 60 chemicals by the lead laboratory provided a comprehensive assessment of test method accuracy and defined the applicability domain of the method. Based on chemicals tested in Phases II and III by the lead laboratory, test method accuracy was 83% and 79% for the EPA and GHS classification systems, respectively; false negative rates were 4% (EPA) and 0% (GHS); and false positive rates were 40% (EPA) and 42% (GHS). Potential causes of false positives in certain chemical (e.g. ethers and alcohols) or hazard classes are being further investigated. CONCLUSION: The OptiSafe test method is useful for identifying nonsurfactant substances not requiring classification for ocular irritancy. OptiSafe represents a new tool for the in vitro assessment of ocular toxicity in a tiered-testing strategy where chemicals can be initially tested and identified as not requiring hazard classification.


Asunto(s)
Alternativas a las Pruebas en Animales , Ojo/efectos de los fármacos , Irritantes/toxicidad , Pruebas de Toxicidad Aguda/métodos , Concentración de Iones de Hidrógeno , Irritantes/química , Sustancias Macromoleculares/química , Reproducibilidad de los Resultados , Solubilidad , Agua/química
2.
Cutan Ocul Toxicol ; 38(2): 141-155, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30418044

RESUMEN

PURPOSE: Eye and skin irritation test data are required or considered by chemical regulation authorities in the United States to develop product hazard labelling and/or to assess risks for exposure to skin- and eye-irritating chemicals. The combination of animal welfare concerns and interest in implementing methods with greater human relevance has led to the development of non-animal skin- and eye-irritation test methods. To identify opportunities for regulatory uses of non-animal replacements for skin and eye irritation tests, the needs and uses for these types of test data at U.S. regulatory and research agencies must first be clarified. METHODS: We surveyed regulatory and non-regulatory testing needs of U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) agencies for skin and eye irritation testing data. Information reviewed includes the type of skin and eye irritation data required by each agency and the associated decision context: hazard classification, potency classification, or risk assessment; the preferred tests; and whether alternative or non-animal tests are acceptable. Information on the specific information needed from non-animal test methods also was collected. RESULTS: A common theme across U.S. agencies is the willingness to consider non-animal or alternative test methods. Sponsors are encouraged to consult with the relevant agency in designing their testing program to discuss the use and acceptance of alternative methods for local skin and eye irritation testing. CONCLUSIONS: To advance the implementation of alternative testing methods, a dialog on the confidence of these methods to protect public health and the environment must be undertaken at all levels.


Asunto(s)
Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Regulación Gubernamental , Pruebas de Toxicidad , Animales , Ojo/efectos de los fármacos , Agencias Gubernamentales , Humanos , Piel/efectos de los fármacos , Estados Unidos
3.
ALTEX ; 39(2): 322­335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35032963

RESUMEN

On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project "Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework" aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and posi­tioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowd­sourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, inte­grating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd.


Asunto(s)
Rutas de Resultados Adversos , COVID-19 , COVID-19/complicaciones , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
4.
J Pharmacol Exp Ther ; 328(3): 758-65, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19056934

RESUMEN

Phosphatidylinositol 3-kinases (PI3Ks) are key elements in the signaling cascades that lie downstream of many cellular receptors. In particular, PI3K delta and gamma isoforms contribute to inflammatory cell recruitment and subsequent activation. For this reason, in a series of preclinical studies, we tested the potential of a recently developed small-molecule inhibitor of these two isoforms, TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol], as a form of anti-inflammatory therapy for respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). To determine pharmacokinetic profiles, aerosolized formulations of the drug were delivered to mice by a nose-only inhalation route, yielding high pulmonary TG100-115 levels with minimal systemic exposure. Safety assessments were favorable, with no clinical or histological changes noted after 21 days of daily dosing. In a murine asthma model, aerosolized TG100-115 markedly reduced the pulmonary eosinophilia and the concomitant interleukin-13 and mucin accumulation characteristic of this disease. As a functional benefit, interventional dosing schedules of this inhibitor also reduced airway hyper-responsiveness. To model the pulmonary neutrophilia characteristic of COPD, mice were exposed to either intranasal lipopolysaccharide or inhaled smoke. Aerosolized TG100-115 again inhibited these inflammatory patterns, most notably in the smoke model, where interventional therapy overcame the steroid-resistant nature of the pulmonary inflammation. In conclusion, aerosolized TG100-115 displays pharmacokinetic, safety, and biological activity profiles favorable for further development as a therapy for both asthma and COPD. Furthermore, these studies support the hypothesis that PI3K delta and gamma are suitable molecular targets for these diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Fenoles/uso terapéutico , Pteridinas/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Administración Intranasal , Aerosoles , Animales , Antiinflamatorios/administración & dosificación , Hiperreactividad Bronquial/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase Ib , Modelos Animales de Enfermedad , Isoenzimas/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo
5.
J Cell Physiol ; 216(1): 29-37, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18330892

RESUMEN

Age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions are complicated by neovascularization and macular edema. Multi-targeted kinase inhibitors that inhibit select growth factor receptor tyrosine kinases and/or components of their down-stream signaling cascades (such as Src kinases) are rationale treatment strategies for these disease processes. We describe the discovery and characterization of two such agents. TG100572, which inhibits Src kinases and selected receptor tyrosine kinases, induced apoptosis of proliferating endothelial cells in vitro. Systemic delivery of TG100572 in a murine model of laser-induced choroidal neovascularization (CNV) caused significant suppression of CNV, but with an associated weight loss suggestive of systemic toxicity. To minimize systemic exposure, topical delivery of TG100572 to the cornea was explored, and while substantial levels of TG100572 were achieved in the retina and choroid, superior exposure levels were achieved using TG100801, an inactive prodrug that generates TG100572 by de-esterification. Neither TG100801 nor TG100572 were detectable in plasma following topical delivery of TG100801, and adverse safety signals (such as weight loss) were not observed even with prolonged dosing schedules. Topical TG100801 significantly suppressed laser-induced CNV in mice, and reduced fluorescein leakage from the vasculature and retinal thickening measured by optical coherence tomography in a rat model of retinal vein occlusion. These data suggest that TG100801 may provide a new topically applied treatment approach for ocular neovascularization and retinal edema.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/tratamiento farmacológico , Papiledema/tratamiento farmacológico , Fenoles/uso terapéutico , Profármacos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Triazinas/uso terapéutico , Familia-src Quinasas/antagonistas & inhibidores , Administración Tópica , Inhibidores de la Angiogénesis/efectos adversos , Inhibidores de la Angiogénesis/metabolismo , Animales , Línea Celular , Neovascularización Coroidal/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Papiledema/patología , Profármacos/efectos adversos , Profármacos/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/metabolismo , Conejos , Ratas , Ratas Long-Evans , Proteínas Tirosina Quinasas Receptoras/metabolismo , Retina/citología , Retina/metabolismo , Retina/patología , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda