RESUMEN
Commercial photoplethysmography (PPG) sensors rely on the measurement of continuous-wave diffuse reflection signals (CW-DRS) to monitor heart rate. Using Monte Carlo modeling of light propagation in skin, we quantitatively evaluate the dependence of continuous-wave photoplethysmography (CW-PPG) in commercial wearables on source-detector distance (SDD). Specifically, when SDD increases from 0.5 mm to 3.3 mm, CW-PPG signal increases by roughly 846% for non-obese (NOB) skin and roughly 683% for morbidly obese (MOB) skin. Ultimately, we introduce the concept of time-of-flight PPG (TOF-PPG) which can significantly improve heart rate signals. Our model shows that the optimized TOF-PPG improves heart rate monitoring experiences by roughly 47.9% in NOB and 93.2% in MOB when SDD = 3.3 mm is at green light. Moving forward, these results will provide a valuable source for hypothesis generation in the scientific community to improve heart rate monitoring.