Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Dairy Sci ; 105(12): 10033-10046, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36307245

RESUMEN

Despite passing stringent quality control, bulls used in artificial insemination can vary significantly in their fertility, emphasizing the need for reliable markers of sperm quality. This study aimed to identify sperm proteins acting as biomarkers of fertility in 2 different populations of dairy bulls classified based on their field fertility. Semen was collected and cryopreserved from: 54 Holstein bulls located in Ireland, classified according to fertility indexes as low fertility (LF, n = 23), medium fertility (n = 14), or high fertility (HF, n = 17); and 18 Holstein bulls located in Denmark, classified as LF (n = 8) or HF (n = 10). The proteome was measured through liquid chromatography-mass spectrometry and data were analyzed with the R software. Differentially abundant proteins between HF and LF bulls and biomarker proteins were determined through a modified t-test and random forest, respectively, selecting 301 differentially abundant proteins and 34 biomarker proteins. The predictive ability of the 34 biomarkers was evaluated employing support vector machine as the classifier, using their abundance levels in the Irish bulls to train the model and in the Danish bulls for validation. The prediction accuracy was 94.4%, with only one HF bull misclassified, corresponding to the lowest fertility index bull in the HF group. The biomarkers more abundant in sperm of HF bulls enriched axoneme assembly and sperm motility (false discovery rate <0.05), according to functional analysis. In conclusion, a robust model coupled with the application of appropriate bioinformatic tools allowed the identification of functionally relevant sperm proteins predictive of the fertility of Holstein bulls used in artificial insemination.


Asunto(s)
Semen , Motilidad Espermática , Masculino , Bovinos , Animales , Espermatozoides/metabolismo , Inseminación Artificial/veterinaria , Biomarcadores/metabolismo
2.
Reprod Domest Anim ; 50(1): 7-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307982

RESUMEN

Oestrous detection is crucial for successful dairy cow reproduction. Bulls identify cows in oestrus by oestrous-specific odours especially in urine and vaginal fluid. These have been used to train dogs to detect cows in heat. To improve and simplify the dog training, a spray containing synthetic oestrous molecules was developed. The objective of this study was to test the spray on similarities to the natural substance thus to assess its suitability as a training substance for heat detection dogs. Ten privately owned dogs of various breeds were trained. Dogs should be trained either to differentiate natural vaginal fluid from cows in oestrus and dioestrus (n = 5), or spray with or without synthetic oestrous molecules (n = 5). Dogs trained on natural fluid and on spray could detect the oestrous odour they had been trained on with an overall accuracy of 69.0% and 82.4%, respectively (p = 0.019). To validate the synthetic molecules, dogs trained with synthetic molecules had to detect oestrous odour in natural fluid without further training (accuracy 37.6%). Dogs trained on natural fluid detected the synthetic molecules with an accuracy of 50.0% (50% vs 37.4%, p < 0.05). Dogs can recognize natural vaginal fluid from cows in oestrus after they have been trained with synthetic oestrous molecules, but accuracy needs to be improved.


Asunto(s)
Bovinos , Perros , Detección del Estro/métodos , Estro/metabolismo , Olfato , Animales , Líquidos Corporales/química , Aprendizaje Discriminativo , Femenino , Masculino , Percepción Olfatoria , Sensibilidad y Especificidad , Vagina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda