Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioelectromagnetics ; 41(5): 369-381, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32452076

RESUMEN

This paper presents the design of a resonant system for in vitro studies to emulate the exposure of a monolayer of cells to a wireless power transfer system operating at 13.56 MHz. The design procedure targets a system, which maximizes the specific absorption rate (SAR) uniformity on the plane where the layer is cultured, as well as SAR efficiency (defined as SAR over the input power), within the size constraints of a standard incubator. Three resonant wireless power transfer systems with different commonly used loop/coil geometries (cylindrical with circular and square cross-sections and annular) were compared with assess the configuration maximizing the considered design criteria. The system performance in terms of reflection and transmission coefficients, as well as generated E- and H-fields, was characterized numerically and experimentally inside the incubator. Moreover, SAR was computed at the monolayer level. The system equipped with cylindrical coils with square cross-sections led to a high electromagnetic field uniformity in in vitro biological samples. In particular, the uniformities in E and SAR at the layer level were within 7.9% and 5.5%, respectively. This was achieved with the variation in H below the usually considered ±5% limit. © 2020 Bioelectromagnetics Society.


Asunto(s)
Suministros de Energía Eléctrica/efectos adversos , Campos Electromagnéticos/efectos adversos , Exposición a la Radiación/análisis , Tecnología Inalámbrica
2.
Bioelectromagnetics ; 41(2): 121-135, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31943296

RESUMEN

This study deals with the design and calibration of the first mode-stirred reverberation chamber (RC) in the 60-GHz-band adapted for in vivo bioelectromagnetic studies. In addition to the interface for electromagnetic and thermal dosimetry, the interfaces for lighting and ventilation were integrated into the RC walls while preserving acceptable shielding. The RC with mechanical and electronic steering capabilities is characterized in the 55-65 GHz range. To this end, murine skin-equivalent phantoms of realistic shape were designed and fabricated. Their complex permittivity is within ±12% of the target value of murine skin (6.19-j5.81 at 60 GHz). The quality factor of the RC loaded with an animal cage, bedding litter, and five murine phantoms was found to be 1.2 × 104 . The losses inside the RC were analyzed, and it was demonstrated that the main sources of the power dissipation were the phantoms and mice cage. The input power required to reach the average incident power density of 1 and 5 mW/cm2 was found to be 0.23 and 1.14 W, respectively. Surface heating of the mice models was measured in the infrared (IR) range using a specifically designed interface, transparent at IR and opaque at millimeter waves (mmW). Experimental results were compared with an analytical solution of the heat transfer equation and to full-wave computations. Analytical and numerical results were in very good agreement with measurements (the relative deviation after 90 min of exposure was within 4.2%). Finally, a parametric study was performed to assess the impact of the thermophysical parameters on the resulting heating. Bioelectromagnetics. 2020;41:121-135. © 2020 Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos , Fantasmas de Imagen , Animales , Calibración , Diseño Asistido por Computadora , Diseño de Equipo , Ratones , Reproducibilidad de los Resultados , Piel , Temperatura , Agua
3.
Bioelectromagnetics ; 40(8): 553-568, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31579965

RESUMEN

Shallow penetration of millimeter waves (MMW) and non-uniform illumination in in vitro experiments result in a non-uniform distribution of the specific absorption rate (SAR). These SAR gradients trigger convective currents in liquids affecting transient and steady-state temperature distributions. We analyzed the effect of convection on temperature dynamics during MMW exposure in continuous-wave (CW) and pulsed-wave (PW) amplitude-modulated regimes using micro-thermocouples. Temperature rise kinetics are characterized by the occurrence of a temperature peak that shifts to shorter times as the SAR of the MMW exposure increases and precedes initiation of convection in bulk. Furthermore, we demonstrate that the liquid volume impacts convection. Increasing the volume results in earlier triggering of convection and in a greater cooling rate after the end of the exposure. In PW regimes, convection strongly depends on the pulse duration that affects the heat pulse amplitude and cooling rate. The latter results in a change of the average temperature in PW regime. Bioelectromagnetics. 2019;40:553-568. © 2019 Bioelectromagnetics Society.


Asunto(s)
Convección , Calor , Técnicas In Vitro , Radiación Electromagnética , Humanos , Cinética , Ondas de Radio , Temperatura
4.
J Proteome Res ; 17(3): 1146-1157, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29430917

RESUMEN

The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.


Asunto(s)
Antineoplásicos/farmacología , Ceramidas/metabolismo , Desoxiglucosa/farmacología , Glucosilceramidas/metabolismo , Queratinocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Transformada , Ceramidas/análisis , Cromatografía Líquida de Alta Presión , Galactolípidos/análisis , Galactolípidos/metabolismo , Glucosilceramidas/análisis , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Espectrometría de Masas , Metabolómica/métodos , Fosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/análisis , Fosfatidiletanolaminas/metabolismo
5.
Bioelectromagnetics ; 38(1): 11-21, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27571392

RESUMEN

Due to shallow penetration of millimeter waves (MMW) and convection in liquid medium surrounding cells, the problem of accurate assessment of local MMW heating in in vitro experiments remains unsolved. Conventional dosimetric MMW techniques, such as infrared imaging or fiber optic (FO) sensors, face several inherent limits. Here we propose a methodology for accurate local temperature measurement and subsequent specific absorption rate (SAR) retrieval using microscale thermocouples (TC). SAR was retrieved by fitting the measured initial temperature rise to the numerical solution of an equivalent thermal model. It was found that the accuracy of temperature measurement depends on thermosensor size, that is, the smaller TC, the more accurate the temperature measurement. SAR determined using TC with lead diameters of 25 and 75 µm demonstrated 98.5% and 80.4% match with computed SAR, respectively. However, both TC provided the same temperature rises in long run (> 10 min). FO probe failed to measure adequately local heating both for short and long exposures due to the relatively large size of the probe sensor (400 µm) and time constant (0.6 s). Calculated SAR in the cell monolayer was almost two times lower than that in the surrounding liquid. It was shown that the impact of the cell monolayer on heating due to its small thickness (5 to 10 µm) can be considered as negligible. Moreover, we demonstrated the possibility of accurate measurement of MMW-induced thermal pulses (up to 10 °C) using 25 µm TC. Bioelectromagnetics. 38:11-21, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Absorción de Radiación , Células/efectos de la radiación , Modelos Biológicos , Ondas de Radio , Temperatura , Humanos
6.
Bioelectromagnetics ; 37(7): 444-54, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27483046

RESUMEN

Millimeter waves (MMW) will be increasingly used for future wireless telecommunications. Previous studies on skin keratinocytes showed that MMW could impact the mRNA expression of Transient Receptor Potential cation channel subfamily Vanilloid, member 2 (TRPV2). Here, we investigated the effect of MMW exposure on this marker, as well as on other membrane receptors such as Transient Receptor Potential cation channel subfamily Vanilloid, member 1 (TRPV1) and purinergic receptor P2X, ligand-gated ion channel, 3 (P2 × 3). We exposed the Neuroscreen-1 cell line (a PC12 subclone), in order to evaluate if acute MMW exposures could impact expression of these membrane receptors at the protein level. Proteotoxic stress-related chaperone protein Heat Shock Protein 70 (HSP70) expression level was also assessed. We used an original high-content screening approach, based on fluorescence microscopy, to allow cell-by-cell analysis and to detect any cell sub-population responding to exposure. Immunocytochemistry was done after 24 h MMW exposure of cells at 60.4 GHz, with an incident power density of 10 mW/cm(2) . Our results showed no impact of MMW exposure on protein expressions of HSP70, TRPV1, TRPV2, and P2 × 3. Moreover, no specific cell sub-populations were found to express one of the studied markers at a different level, compared to the rest of the cell populations. However, a slight insignificant increase in HSP70 expression and an increase in protein expression variability within cell population were observed in exposed cells, but controls showed that this was related to thermal effect. Bioelectromagnetics. 37:444-454, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/genética , Neuronas/citología , Ondas de Radio/efectos adversos , Animales , Biomarcadores/metabolismo , Neuronas/efectos de la radiación , Células PC12 , Ratas
7.
Bioelectromagnetics ; 36(6): 464-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26179286

RESUMEN

This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution.


Asunto(s)
Calor , Hipertermia Inducida/métodos , Microondas/uso terapéutico , Piel/efectos de la radiación , Aire , Circulación Sanguínea/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Cinética , Melanoma/irrigación sanguínea , Melanoma/metabolismo , Melanoma/terapia , Modelos Biológicos , Piel/irrigación sanguínea , Piel/metabolismo , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia , Agua/metabolismo
9.
BMC Cancer ; 14: 407, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24906407

RESUMEN

BACKGROUND: The orphan receptors COUP-TF (chicken ovalbumin upstream promoter transcription factor) I and II are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis. The involvement of COUP-TFs in cancer development has recently been suggested by several studies but remains poorly understood. METHODS: MCF-7 breast cancer cells overexpressing COUP-TFI and human breast tumors were used to investigate the role of COUP-TFI in the regulation of CXCL12/CXCR4 signaling axis in relation to cell growth and migration. We used Immunofluorescence, western-blot, RT-PCR, Formaldehyde-assisted Isolation of Regulatory Elements (FAIRE) assays, as well as cell proliferation and migration assays. RESULTS: Previously, we showed that COUP-TFI expression is enhanced in breast cancer compared to normal tissue. Here, we report that the CXCL12/CXCR4 signaling pathway, a crucial pathway in cell growth and migration, is an endogenous target of COUP-TFI in breast cancer cells. The overexpression of COUP-TFI in MCF-7 cells inhibits the expression of the chemokine CXCL12 and markedly enhances the expression of its receptor, CXCR4. Our results demonstrate that the modification of CXCL12/CXCR4 expression by COUP-TFI is mediated by the activation of epithelial growth factor (EGF) and the EGF receptor. Furthermore, we provide evidence that these effects of COUP-TFI increase the growth and motility of MCF-7 cells in response to CXCL12. Cell migration toward a CXCL12 gradient was inhibited by AMD3100, a specific antagonist of CXCR4, or in the presence of excess CXCL12 in the cell culture medium. The expression profiles of CXCR4, CXCR7, CXCL12, and COUP-TFI mRNA in 82 breast tumors and control non-tumor samples were measured using real-time PCR. CXCR4 expression was found to be significantly increased in the tumors and correlated with the tumor grade, whereas the expression of CXCL12 was significantly decreased in the tumors compared with the healthy samples. Significantly higher COUP-TFI mRNA expression was also detected in grade 1 tumors. CONCLUSIONS: Together, our mechanistic in vitro assays and in vivo results suggest that a reduction in chemokine CXCL12 expression, with an enhancement of CXCR4 expression, provoked by COUP-TFI, could be associated with an increase in the invasive potential of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Factor de Transcripción COUP I/metabolismo , Quimiocina CXCL12/biosíntesis , Factor de Crecimiento Epidérmico/metabolismo , Receptores CXCR4/biosíntesis , Neoplasias de la Mama/patología , Factor de Transcripción COUP I/genética , Movimiento Celular/genética , Proliferación Celular , Factor de Crecimiento Epidérmico/biosíntesis , Receptores ErbB/biosíntesis , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Regiones Promotoras Genéticas , Transducción de Señal
10.
Bioelectromagnetics ; 35(6): 444-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25099539

RESUMEN

Emerging high data rate wireless communication systems, currently under development, will operate at millimeter waves (MMW) and specifically in the 60 GHz band for broadband short-range communications. The aim of this study was to investigate potential effects of MMW radiation on the cellular endoplasmic reticulum (ER) stress. Human skin cell lines were exposed at 60.4 GHz, with incident power densities (IPD) ranging between 1 and 20 mW/cm(2) . The upper IPD limits correspond to the ICNIRP local exposure limit for the general public. The expression of ER-stress sensors, namely BIP and ORP150, was then examined by real-time RT-PCR. Our experimental data demonstrated that MMW radiations do not change BIP or ORP150 mRNA basal levels, whatever the cell line, the exposure duration or the IPD level. Co-exposure to the well-known ER-stress inducer thapsigargin (TG) and MMW were then assessed. Our results show that MMW exposure at 20 mW/cm(2) inhibits TG-induced BIP and ORP150 over expression. Experimental controls showed that this inhibition is linked to the thermal effect resulting from the MMW exposure.


Asunto(s)
Radiación Electromagnética , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/efectos de la radiación , Calor , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Expresión Génica/efectos de la radiación , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Piel/efectos de los fármacos , Piel/efectos de la radiación , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Fenómenos Fisiológicos de la Piel/genética , Fenómenos Fisiológicos de la Piel/efectos de la radiación , Tapsigargina/farmacología , Factores de Tiempo , Tecnología Inalámbrica
11.
Toxicol In Vitro ; 97: 105808, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484921

RESUMEN

The use of millimeter waves (MMW) will exponentially grow in the coming years due to their future utilization in 5G/6G networks. The question of possible biological effects at these frequencies has been raised. In this present study, we aimed to investigate gene expression changes under exposure to MMW using the Bulk RNA Barcoding and sequencing (BRB-seq) technology. To address this issue, three exposure scenarios were performed aiming at: i) comparing the cellular response of two primary culture of keratinocytes (HEK and NHEK) and one keratinocyte derivate cell line (HaCaT) exposed to MMW; ii) exploring the incident power density dose-effect on gene expression in HaCaT cell line; and, iii) studying the exposure duration at the new ICNIRP exposure limit for the general population. With the exception of heat effect induced by high power MMW (over 10 mW/cm2), those exposure scenarios have not enabled us to demonstrate important gene expression changes in the different cell populations studied. Very few differentially genes were observed between MMW exposed samples and heat shock control, and most of them were significantly associated with heat shock response that may reflect small differences in the heat generation. Together these results show that acute exposure to MMW has no effects on the transcriptional landscape of human keratinocyte models under athermal conditions.


Asunto(s)
Queratinocitos , Humanos , Queratinocitos/metabolismo , Línea Celular
12.
Cell Mol Life Sci ; 69(13): 2189-203, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22331281

RESUMEN

A hallmark of living systems is the management and the storage of information through genetic and epigenetic mechanisms. Although the notion of epigenetics was originally given to any regulation beyond DNA sequence, it has often been restricted to chromatin modifications, supposed to behave as cis-markers, specifying the sets of genes to be expressed or repressed. This definition does not take into account the initial view of epigenetics, based on nonlinear interaction networks whose "attractors" can remain stable without need for any chromatin mark. In addition, most chromatin modifications are the steady state resultants of highly dynamic modification and de-modification activities and, as such, seem poorly appropriate to work as long-term memory keepers. Instead, the basic support of epigenetic memory could remain the attractors, to which chromatin modifications belong as do many other components. The influence of chromatin modifications in memory is highly questionable when envisioned as static structural marks, but can be recovered under the dynamic circuitry perspective, thanks to their self-templating properties. Beside their standard repressive or permissive functions, chromatin modifications can also influence transcription in multiple ways such as: (1) by randomizing or inversely stabilizing gene expression, (2) by mediating cooperativity between pioneer and secondary transcription factors, and (3) in the hysteresis and the ultrasensitivity of gene expression switches, allowing the cells to take unambiguous transcriptional decisions.


Asunto(s)
Evolución Biológica , Ensamble y Desensamble de Cromatina/fisiología , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Modelos Genéticos , Cibernética
13.
Bioelectromagnetics ; 33(1): 55-64, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21713963

RESUMEN

Due to the expected mass deployment of millimeter-wave wireless technologies, thresholds of potential millimeter-wave-induced biological and health effects should be carefully assessed. The main purpose of this study is to propose, optimize, and characterize a near-field exposure configuration allowing illumination of cells in vitro at 60 GHz with power densities up to several tens of mW/cm(2) . Positioning of a tissue culture plate containing cells has been optimized in the near-field of a standard horn antenna operating at 60 GHz. The optimal position corresponds to the maximal mean-to-peak specific absorption rate (SAR) ratio over the cell monolayer, allowing the achievement of power densities up to 50 mW/cm(2) at least. Three complementary parameters have been determined and analyzed for the exposed cells, namely the power density, SAR, and temperature dynamics. The incident power density and SAR have been computed using the finite-difference time-domain (FDTD) method. The temperature dynamics at different locations inside the culture medium are measured and analyzed for various power densities. Local SAR, determined based on the initial rate of temperature rise, is in a good agreement with the computed SAR (maximal difference of 5%). For the optimized exposure setup configuration, 73% of cells are located within the ±3 dB region with respect to the average SAR. It is shown that under the considered exposure conditions, the maximal power density, local SAR, and temperature increments equal 57 mW/cm(2) , 1.4 kW/kg, and 6 °C, respectively, for the radiated power of 425 mW.


Asunto(s)
Queratinocitos/efectos de la radiación , Ondas de Radio , Células Cultivadas , Humanos , Radiometría , Temperatura , Tecnología Inalámbrica
14.
Bioelectromagnetics ; 33(4): 346-55, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22012893

RESUMEN

The main purpose of this study is to provide experimental data on the complex permittivity of some biological solutions in the 2-67 GHz range at room and human body temperatures. The permittivity measurements are performed using an open-ended coaxial probe. Permittivity spectra of several representative monomolecular solutions of proteins, amino acids, nucleic acids, and carbohydrates are analyzed and compared. Furthermore, measurements have also been performed for complex biomolecular solutions, including bovine serum albumin (BSA)-DNA-glucose mixture, culture medium, and yeast extract solution. The results demonstrate that for concentrations below 1%, the permittivity spectra of the solutions do not substantially differ from that of distilled water. Measurements carried out for 4% and 20% BSA solutions show that the presence of proteins results in a decrease in permittivity. For highly concentrated RNA solutions (3%), a slight increase in the imaginary part of the permittivity is observed below 10 GHz. Experimental data show that free water permittivity can be used for modeling of the culture medium above 10 GHz. However, at lower frequencies a substantial increase in the imaginary part of the permittivity due to ionic conductivity should be carefully taken into account. A similar increase has also been observed for the yeast extract solution in the lower frequency region of the considered spectrum. Above 10 GHz, the high concentration of proteins and other low-permittivity components of the yeast extract solution results in a decrease in the complex permittivity compared to that of water. Obtained data are of utmost importance for millimeter-wave dosimetry studies.


Asunto(s)
Ondas de Radio/efectos adversos , Soluciones , Animales , Candida/citología , Candida/efectos de la radiación , Bovinos , Medios de Cultivo/química , ADN/química , Glucosa/química , Humanos , Reproducibilidad de los Resultados , Albúmina Sérica Bovina/química , Temperatura
15.
Bioelectromagnetics ; 33(2): 147-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21812010

RESUMEN

The main purpose of this study is to investigate potential responses of skin cells to millimeter wave (MMW) radiation increasingly used in the wireless technologies. Primary human skin cells were exposed for 1, 6, or 24 h to 60.4 GHz with an average incident power density of 1.8 mW/cm(2) and an average specific absorption rate of 42.4 W/kg. A large-scale analysis was performed to determine whether these exposures could affect the gene expression. Gene expression microarrays containing over 41,000 unique human transcript probe sets were used, and data obtained for sham and exposed cells were compared. No significant difference in gene expression was observed when gene expression values were subjected to a stringent statistical analysis such as the Benjamini-Hochberg procedure. However, when a t-test was employed to analyze microarray data, 130 transcripts were found to be potentially modulated after exposure. To further quantitatively analyze these preselected transcripts, real-time PCR was performed on 24 genes with the best combination of high fold change and low P-value. Five of them, namely CRIP2, PLXND1, PTX3, SERPINF1, and TRPV2, were confirmed as differentially expressed after 6 h of exposure. To the best of our knowledge, this is the first large-scale study reporting on potential gene expression modification associated with MMW radiation used in wireless communication applications.


Asunto(s)
Queratinocitos/fisiología , Queratinocitos/efectos de la radiación , Microondas , Proteoma/metabolismo , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Genoma Humano/fisiología , Genoma Humano/efectos de la radiación , Humanos , Masculino , Dosis de Radiación
16.
IEEE Trans Biomed Eng ; 69(2): 840-848, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34437056

RESUMEN

OBJECTIVE: Cellular sensitivity to heat is highly variable depending on the cell line. The aim of this paper is to assess the cellular sensitivity of the A375 melanoma cell line to continuous (CW) millimeter-waves (MMW) induced heating at 58.4 GHz, between 37 °C and 47 °C to get a deeper insight into optimization of thermal treatment of superficial skin cancer. METHODS: Phosphorylation of heat shock protein 27 (HSP27) was mapped within an area of about 30 mm 2 to visualize the variation of heat-induced cellular stress as a function of the distance from the waveguide aperture (MMW radiation source). A multiphysics computational approach was then adopted to yield both electromagnetic and thermal field distributions as well as corresponding specific absorption rate (SAR) and temperature elevation. Induced temperature rise was experimentally measured using a micro-thermocouple ( µTC). RESULTS: Coupling of the incident electromagnetic (EM) field with µTC leads was first characterized, and optimal µTC placing was identified. HSP27 phosphorylation was induced at temperatures ≥ 41 °C, and its level increases as a function of the thermal dose delivered, remaining mostly focused within 3 mm 2. CONCLUSION: Phosphorylation of HSP27 represents a valuable marker of cellular stress of A375 melanoma cells under MMW exposure, providing both quantitative and spatial information about the distribution of the thermal stress. SIGNIFICANCE: These results may contribute to the design of thermal treatments of superficial melanoma through MMW-induced heating in the hyperthermic temperature range.


Asunto(s)
Respuesta al Choque Térmico , Calefacción , Campos Electromagnéticos , Temperatura
17.
Biophys J ; 101(7): 1557-68, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21961581

RESUMEN

Transcriptional memory of transient signals can be imprinted on living systems and influence their reactivity to repeated stimulations. Although they are classically ascribed to structural chromatin rearrangements in eukaryotes, such behaviors can also rely on dynamic memory circuits with sustained self-amplification loops. However, these phenomena are either of finite duration, or conversely associated to sustained phenotypic changes. A mechanism is proposed, in which only the responsiveness of the target gene is durably reset at a higher level after primary stimulation, using the celebrated but still puzzling vitellogenesis memory effect. The basic ingredients of this system are: 1), a positive autoregulation of the estrogen receptor α gene; 2), a strongly cooperative action of the estradiol receptor on vitellogenin expression; and 3), a variant isoform of the estradiol receptor with two autonomous transcription-activating modules, one of which is signal-independent and the other, signal-dependent. Realistic quantification supports the possibility of a multistationary situation in which ligand-independent activity is unable by itself to prime the amplification loop, but can click the system over a memory threshold after a primary stimulation. This ratchet transcriptional mechanism can have developmental and ecotoxicological importance and explain lifelong imprinting of past exposures without apparent phenotypic changes before restimulation and without need for persistent chromatin modifications.


Asunto(s)
Modelos Biológicos , Transcripción Genética/genética , Vitelogénesis/genética , Animales , Humanos , Estructura Terciaria de Proteína , Receptores de Estrógenos/química , Receptores de Estrógenos/metabolismo , Activación Transcripcional/genética , Vitelogeninas/genética
18.
Cell Stress Chaperones ; 26(1): 241-251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067759

RESUMEN

As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico , Ondas de Radio/efectos adversos , Transferencia de Energía , Células HEK293 , Factores de Transcripción del Choque Térmico/análisis , Humanos , Mediciones Luminiscentes
19.
Radiat Res ; 193(4): 351-358, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32126188

RESUMEN

Millimeter waves (MMW) are broadband frequencies that have recently been used in several applications in wireless communications, medical devices and nonlethal weapons [i.e., the nonlethal weapon, Active Denial Systems, (ADS) operating at 94-95 GHz, CW]. However, little information is available on their potential effects on humans. These radio-frequencies are absorbed and stopped by the first layer of the skin. In this study, we evaluated the effects of 94 GHz on the gene expression of skin cells. Two rat populations consisting of 17 young animals and 14 adults were subjected to chronic long-term 94 GHz MMW exposure. Each group of animals was divided into exposed and sham subgroups. The two independent exposure experiments were conducted for 5 months with rats exposed 3 h per day for 3 days per week to an incident power density of 10 mW/cm2, which corresponded to twice the ICNIRP limit of occupational exposure for humans. At the end of the experiment, skin explants were collected and RNA was extracted. Then, the modifications to the whole gene expression profile were analyzed with a gene expression microarray. Without modification of the animal's temperature, long-term chronic 94 GHz-MMW exposure did not significantly modify the gene expression of the skin on either the young or adult rats.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Ondas de Radio/efectos adversos , Piel/efectos de la radiación , Tecnología Inalámbrica , Animales , Humanos , Ratas , Ratas sin Pelo/genética , Ratas sin Pelo/metabolismo , Medición de Riesgo , Piel/metabolismo , Transcriptoma/efectos de la radiación
20.
Cell Biol Toxicol ; 25(5): 471-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18685816

RESUMEN

Millimeter waves (MMW) at frequencies around 60 GHz will be used in the very near future in the emerging local wireless communication systems and the potential health hazards of artificially induced environmental exposures represent a major public concern. The main aim of this study was to investigate the potential effects of low-power MMW radiations on cellular physiology. To this end, the human glial cell line, U-251 MG, was exposed to 60.4 GHz radiation at a power density of 0.14 mW/cm(2) and potential effect of MMW radiations on endoplasmic reticulum (ER) stress was investigated. ER is very sensitive to environmental insults and its homeostasis is altered in various pathologies. Through several assay systems, we found that exposure to 60.4 GHz does not modify ER protein folding and secretion, nor induces XBP1 or ATF6 transcription factors maturation. Moreover, expression of ER-stress sensor, BiP/GRP78 was examined by real-time PCR, in exposed or non-exposed cells to MMW radiations. Our data demonstrated the absence of significant changes in mRNA levels for BiP/GRP78. Our results showed that ER homeostasis does not undergo any modification at molecular level after exposure to low-power MMW radiation at 60.4 GHz. This report is the first study of ER-stress induction by MMW radiations.


Asunto(s)
Retículo Endoplásmico/efectos de la radiación , Ondas de Radio , Secuencia de Bases , Cartilla de ADN , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Homeostasis/efectos de la radiación , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda