Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Chemother Pharmacol ; 55(3): 213-21, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15592840

RESUMEN

OSI-7836 (4'-thio-beta-D-arabinofuranosylcytosine) is a novel nucleoside analog in phase I clinical development for the treatment of cancer. As with other nucleoside analogs, the proposed mechanism of action involves phosphorylation to the triphosphate form followed by incorporation into cellular DNA, leading to cell death. This hypothesis has been examined by measuring and comparing the incorporation of ara-C, OSI-7836, and gemcitabine (dFdC) into DNA of cultured cells and by investigating the role of deoxycytidine kinase in OSI-7836 toxicity. We report here additional studies in which the role of cell cycling on OSI-7836 toxicity was investigated and incorporation of OSI-7836 into DNA of xenograft tumors measured. The role of the cell cycle was examined by comparing the toxicity of OSI-7836 in A549 NSCLC cells that were either in log phase growth or had reached confluence. A novel validated LC-MS/MS assay was developed to quantify the concentrations of OSI-7836 in DNA from Calu-6 and H460 human tumor xenografts in mice. Results showed that apoptosis induced by OSI-7836 was markedly greater in cycling cells than in confluent non-cycling cells despite only a modest increase in intracellular OSI-7836 triphosphate concentration. The LC-MS/MS assay developed to measure OSI-7836 incorporation into DNA had an on-column detection limit of 0.25 fmol, a quantification limit of 0.5 fmol, and a sensitivity of approximately 0.1 pmol OSI-7836/micromol dThy. Concentrations of OSI-7836 in splenic DNA (0.4 pmol OSI-7836/micromol dThy) averaged fivefold less than the average concentration in Calu-6 and H460 xenograft DNA (3.0 pmol OSI-7836/micromol dThy) following a 400 mg/kg dose of OSI-7836. Concentrations of OSI-7836 in Calu-6 tumor DNA isolated 24 h following a dose of 400, 1000, or 1600 mg OSI-7836/kg were approximately 1.3, 1 and 1.3 pmol OSI-7836/micromol dThy, respectively. Concentrations of OSI-7836 in DNA from H460 and Calu-6 xenografts did not appear to increase during repeated administration of 400 mg OSI-7836/kg on days 1, 4, 7, and 10. The majority of OSI-7836 in DNA from Calu-6 and H460 tumors of mice dosed with 1600 mg/kg was located at internal nucleotide linkages, similar to dFdC and ara-C. In conclusion, cell cycling studies supported the hypothesis that OSI-7836 cytotoxicity is dependent upon DNA synthesis. A validated LC-MS/MS assay was developed that could quantify OSI-7836 in DNA from tissues. The assay was used to show that OSI-7836 was incorporated in internal linkages in tumor DNA in a manner that was dose-independent at the doses tested and did not appear to accumulate during repeated dosing. The results suggest that if DNA incorporation is a toxic event, the relationships between administered dose, DNA incorporation, and toxicity are complex.


Asunto(s)
Antineoplásicos/metabolismo , Arabinonucleósidos/metabolismo , ADN de Neoplasias/metabolismo , Animales , Ciclo Celular , Replicación del ADN , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Trasplante de Neoplasias , Trasplante Heterólogo , Células Tumorales Cultivadas
2.
Leuk Res ; 27(11): 1039-50, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12859997

RESUMEN

OSI-211 (liposomal lurtotecan), was evaluated using several different dose schedules (1mg/kg, d1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) in severe combined immunodeficient (SCID) mouse models of acute myelogenous leukemia (AML) and acute lymphocytic leukemia (ALL) with early treatment (ET, days 6-8) or late treatment (LT, days 15-19), examining early and advanced disease, respectively. Due to the aggressive nature of the Molt-4 model, the ET and LT were accelerated to day 3 or 4 and day 8 post-implant, respectively. For each model, 2 x 10(7) (KBM-3B) or 1 x 10(7) (Molt-4, HL-60 and CEM) leukemia cells were injected intravenously into the tail vein. Each control and test group consisted of eight animals. All three schedules (1mg/kg qd1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) increased the life span of OSI-211 treated animals in each model, with a tendency toward improved efficacy with the 6 mg/kg d1, 8 schedule. As a result, the activity of the 6 mg/kg d1, 8 schedule is detailed for each model. ET significantly (P<0.005) increased survival in the KBM-3B model with 86% long-term survivors (LTS). Using PRC analysis, human beta-globin gene sequences in one or several tissues were amplified in all but 3 LTS, suggesting minimal residual disease in 26 of the 29 LTS. LT also significantly (P<0.005) improved average life span in the KBM-3B model, with an average ILS=196+/-11% and one LTS. Treatment of HL-60 leukemia animals significantly (P<0.005) increased life span, with an ILS=213+/-9% and two LTS for ET, and with an ILS=219+/-4% and no LTS for LT. Treatment of Molt-4 animals, the most aggressive leukemia model tested, significantly (P<0.005) increased life span, with an average ILS=181+/-3% and no LTS for ET and an average ILS=172+/-1% with no LTS for LT. In the CEM model, ET resulted in a significantly (P<0.005) improved ILS=244+/-24% with one LTS. In comparison to OSI-211, treatment with DaunoXome, the liposomal formulation of daunorubicin, a drug with clinical efficacy in AML and ALL, had no effect on survival in the KBM-3B, nor Molt-4 A4 leukemia models when administered at its maximum or near maximum tolerated doses of 3mg/kg d1, 8. These data demonstrate that OSI-211 has potent antileukemia activity in preclinical SCID mouse AML and ALL leukemia models, supporting the clinical investigation of OSI-211 for hematological malignancies.


Asunto(s)
Antineoplásicos/uso terapéutico , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Evaluación de Medicamentos , Femenino , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Trasplante Heterólogo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda