Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Neuroinflammation ; 21(1): 31, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263116

RESUMEN

BACKGROUND AND PURPOSE: The only validated treatment to prevent brain damage associated with hypoxia-ischemia (HI) encephalopathy of the newborn is controlled hypothermia with limited benefits. Additional putative neuroprotective drug candidates include sildenafil citrate, a phosphodiesterase-type 5 inhibitor. The main objective of this preclinical study is to assess its ability to reduce HI-induced neuroinflammation, in particular through its potential effect on microglial activation. METHODS: HI was induced in P10 Sprague-Dawley rats by unilateral carotid permanent artery occlusion and hypoxia (HI) and treated by either hypothermia (HT) alone, Sildenafil (Sild) alone or combined treatment (SildHT). Lesion size and glial activation were analyzed by immunohistochemistry, qRT-PCR, and proteomic analyses performed at P13. RESULTS: None of the treatments was associated with a significant early reduction in lesion size 72h after HI, despite significant changes in tissue loss distribution. Significant reductions in both Iba1 + (within the ipsilateral hemisphere) and GFAP + cells (within the ipsilateral hippocampus) were observed in SildHT group, but not in the other treatment groups. In microglia-sorted cells, pro-inflammatory markers, i.e. Il1b, Il6, Nos2, and CD86 were significantly downregulated in SildHT treatment group only. These changes were restricted to the ipsilateral hemisphere, were not evidenced in sorted astrocytes, and were not sex dependent. Proteomic analyses in sorted microglia refined the pro-inflammatory effect of HI and confirmed a biologically relevant impact of SildHT on specific molecular pathways including genes related to neutrophilic functions. CONCLUSIONS: Our findings suggest that Sildenafil combined with controlled hypothermia produces maximum effect in mitigating microglial activation induced by HI through complex proteomic regulation. The reduction of neuroinflammation induced by Sildenafil may represent an interesting therapeutic strategy for neonatal neuroprotection.


Asunto(s)
Hipotermia , Hipoxia-Isquemia Encefálica , Ratas , Animales , Citrato de Sildenafil , Microglía , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Proteómica , Isquemia , Hipoxia
2.
Am J Hematol ; 99(1): 99-112, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37929634

RESUMEN

Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.


Asunto(s)
Células Madre Hematopoyéticas , Proteómica , Humanos , Diferenciación Celular , Ciclo Celular , Eritropoyesis , Redes y Vías Metabólicas , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Precursoras Eritroides
3.
Blood ; 137(1): 89-102, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32818241

RESUMEN

The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Células Eritroides/citología , Eritropoyesis/fisiología , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Madre Hematopoyéticas , Humanos , Ratones , Biogénesis de Organelos
4.
Hepatol Res ; 53(7): 661-674, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866738

RESUMEN

AIM: Hepatic zonation is a physiological feature of the liver, known to be key in the regulation of the metabolism of nutrients and xenobiotics and the biotransformation of numerous substances. However, the reproduction of this phenomenon remains challenging in vitro as only part of the processes involved in the orchestration and maintenance of zonation are fully understood. The recent advances in organ-on-chip technologies, which allow for the integration of multicellular 3D tissues in a dynamic microenvironment, could offer solutions for the reproduction of zonation within a single culture vessel. METHODS: An in-depth analysis of zonation-related mechanisms observed during the coculture of human-induced pluripotent stem cell (hiPSC)-derived carboxypeptidase M-positive liver progenitor cells and hiPSC-derived liver sinusoidal endothelial cells within a microfluidic biochip was carried out. RESULTS: Hepatic phenotypes were confirmed in terms of albumin secretion, glycogen storage, CYP450 activity, and expression of specific endothelial markers such as PECAM1, RAB5A, and CD109. Further characterization of the patterns observed in the comparison of the transcription factor motif activities, the transcriptomic signature, and the proteomic profile expressed at the inlet and the outlet of the microfluidic biochip confirmed the presence of zonation-like phenomena within the biochips. In particular, differences related to Wnt/ß-catenin, transforming growth factor-ß, mammalian target of rapamycin, hypoxia-inducible factor-1, and AMP-activated protein kinase signaling, to the metabolism of lipids, and cellular remolding were observed. CONCLUSIONS: The present study shows the interest in combining cocultures of hiPSC-derived cellular models and microfluidic technologies for reproducing in vitro complex mechanisms such as liver zonation and further incites the use of those solutions for accurate reproduction of in vivo situations.

5.
Differentiation ; 120: 28-35, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34229994

RESUMEN

The liver is a complex organ composed of several cell types organized hierarchically. Among these, liver sinusoidal endothelial cells (LSECs) are specialized vascular cells known to interact with hepatocytes and hepatic stellate cells (HSCs), and to be involved in the regulation of important hepatic processes in healthy and pathological situations. Protocols for the differentiation of LSECs from human induced pluripotent stem cells, hiPSCs, have been proposed and in-depth analysis by transcriptomic profiling of those cells has been performed. In the present work, an extended analysis of those cells in terms of proteome and metabolome has been implemented. The proteomic analysis confirmed the expression of important endothelial markers and pathways. Among them, the expression of patterns typical of LSECs such as PECAM1, VWF, LYVE1, STAB1 (endothelial markers), CDH13, CDH5, CLDN5, ICAM1, MCAM-CD146, ICAM2, ESAM (endothelial cytoskeleton), NOSTRIN, NOS3 (Nitric Oxide endothelial ROS), ESM1, ENG, MMRN2, THBS1, ANGPT2 (angiogenesis), CD93, MRC1 (mannose receptor), CLEC14A (C-type lectin), CD40 (antigen), and ERG (transcription factor) was highlighted. Besides, the pathway analysis revealed the enrichment of the endocytosis, Toll-like receptor, Nod-like receptor, Wnt, Apelin, VEGF, cGMP-PCK, and PPAR related signaling pathways. Other important pathways such as vasopressin regulated water reabsorption, fluid shear stress, relaxin signaling, and renin secretion were also highlighted. At confluence, the metabolome profile appeared consistent with quiescent endothelial cell patterns. The integration of both proteome and metabolome datasets revealed a switch from fatty acid synthesis in undifferentiated hiPSCs to a fatty oxidation in LSECs and activation of the pentose phosphate pathway and polyamine metabolism in hiPSCs-derived LSECs. In conclusion, the comparison between the signature of LSECs differentiated following the protocol described in this work, and data found in the literature confirmed the particular relevance of these cells for future in vitro applications.


Asunto(s)
Diferenciación Celular , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metaboloma , Proteoma , Células Cultivadas , Células Endoteliales/citología , Endotelio Vascular/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Hígado/irrigación sanguínea , Hígado/citología
6.
Mol Biol Evol ; 37(12): 3453-3468, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32658962

RESUMEN

Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly.


Asunto(s)
Evolución Biológica , Proteínas Nucleares/genética , Proteínas/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas/metabolismo , Espermátides/metabolismo , Sitio de Iniciación de la Transcripción
7.
Biotechnol Bioeng ; 118(10): 3716-3732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33404112

RESUMEN

Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.


Asunto(s)
Diferenciación Celular , Genómica , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Regeneración Hepática , Hígado/metabolismo , Proteómica , Humanos
8.
Am J Hematol ; 96(4): 480-492, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476437

RESUMEN

Efficient erythropoiesis relies on the expression of the transferrin receptor type 2 (TFR2). In erythroid precursors, TFR2 facilitates the export of the erythropoietin receptor (EPOR) to cell surface, which ensures the survival and proliferation of erythroblasts. Although TFR2 has a crucial role in erythropoiesis regulation, its mechanism of action remains to be clarified. To understand its role better, we aimed at identifying its protein partners by mass-spectrometry after immunoprecipitation in erythroid cells. Here we report the kinase MRCKα (myotonic dystrophy kinase-related CDC42-binding kinase α) as a new partner of both TFR2 and EPOR in erythroblasts. We show that MRCKα is co-expressed with TFR2, and TFR1 during terminal differentiation and regulates the internalization of the two types of transferrin receptors. The knockdown of MRCKα by shRNA in human primary erythroblasts leads to a decreased cell surface expression of both TFR1 and TFR2, an increased cell-surface expression of EPOR, and a delayed differentiation. Additionally, knockout of Mrckα in the murine MEDEP cells also leads to a striking delay in erythropoiesis, showcasing the importance of this kinase in both species. Our data highlight the importance of MRCKα in the regulation of erythropoiesis.


Asunto(s)
Eritropoyesis/fisiología , Proteína Quinasa de Distrofia Miotónica/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Endocitosis , Eritroblastos/citología , Eritroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Hierro/metabolismo , Ratones , Proteína Quinasa de Distrofia Miotónica/aislamiento & purificación , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Receptores de Eritropoyetina/metabolismo , Receptores de Transferrina/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
9.
J Pathol ; 250(3): 251-261, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31729028

RESUMEN

Traditional serrated adenoma (TSA) remains the least understood of all the colorectal adenomas, although these lesions have been associated with a significant cancer risk, twice that of the conventional adenoma (CAD) and of the sessile serrated adenoma (SSA/P). This study was performed to investigate the proteomic profiles of the different colorectal adenomas to better understand the pathogenesis of TSA. We performed a global quantitative proteome analysis using the label-free quantification (LFQ) method on 44 colorectal adenoma (12 TSAs, 15 CADs, and 17 SSA/Ps) and 17 normal colonic mucosa samples, archived as formalin-fixed paraffin-embedded blocks. Unsupervised consensus hierarchical clustering applied to the whole proteomic profile of the 44 colorectal adenomas identified four subtypes: C1 and C2 were well-individualized clusters composed of all the CADs (15/15) and most of the SSA/Ps (13/17), respectively. This is consistent with the fact that CADs and SSA/Ps are homogeneous and distinct colorectal adenoma entities. In contrast, TSAs were subdivided into C3 and C4 clusters, consistent with the more heterogeneous entity of TSA at the morphologic and molecular levels. Comparison of the proteome expression profile between the adenoma subtypes and normal colonic mucosa further confirmed the heterogeneous nature of TSAs, which overlapped either on CADs or SSA/Ps, whereas CADs and SSAs formed homogeneous and distinct entities. Furthermore, we identified LEFTY1 a new potential marker for TSAs that may be relevant for the pathogenesis of TSA. LEFTY1 is an inhibitor of the Nodal/TGFß pathway, which we found to be one of the most overexpressed proteins specifically in TSAs. This finding was confirmed by immunohistochemistry. Our study confirms that CADs and SSA/Ps form homogeneous and distinct colorectal adenoma entities, whereas TSAs are a heterogeneous entity and may arise from either SSA/Ps or from normal mucosa evolving through a process related to the CAD pathway. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenoma/metabolismo , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Proteoma , Adenoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Colon/patología , Neoplasias Colorrectales/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Adhesión en Parafina , Proteómica
10.
Mol Cell Proteomics ; 16(5): 824-839, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28265047

RESUMEN

Immunoglobulin G (IgG) proteins are known for the huge diversity of the variable domains of their heavy and light chains, aimed at protecting each individual against foreign antigens. The IgG also harbor specific polymorphism concentrated in the CH2 and CH3-CHS constant regions located on the Fc fragment of their heavy chains. But this individual particularity relies only on a few amino acids among which some could make accurate sequence determination a challenge for mass spectrometry-based techniques.The purpose of the study was to bring a molecular validation of proteomic results by the sequencing of encoding DNA fragments. It was performed using ten individual samples (DNA and sera) selected on the basis of their Gm (gamma marker) allotype polymorphism in order to cover the main immunoglobulin heavy gamma (IGHG) gene diversity. Gm allotypes, reflecting part of this diversity, were determined by a serological method. On its side, the IGH locus comprises four functional IGHG genes totalizing 34 alleles and encoding the four IgG subclasses. The genomic study focused on the nucleotide polymorphism of the CH2 and CH3-CHS exons and of the intron. Despite strong sequence identity, four pairs of specific gene amplification primers could be designed. Additional primers were identified to perform the subsequent sequencing. The nucleotide sequences obtained were first assigned to a specific IGHG gene, and then IGHG alleles were deduced using a home-made decision tree reading of the nucleotide sequences. IGHG amino acid (AA) alleles were determined by mass spectrometry. Identical results were found at 95% between alleles identified by proteomics and those deduced from genomics. These results validate the proteomic approach which could be used for diagnostic purposes, namely for a mother-and-child differential IGHG detection in a context of suspicion of congenital infection.


Asunto(s)
Cadenas gamma de Inmunoglobulina/genética , Polimorfismo Genético , Proteómica/métodos , Alelos , Niño , Preescolar , Bases de Datos de Proteínas , Femenino , Humanos , Alotipos de Inmunoglobulina Gm , Masculino , Espectrometría de Masas , Péptidos/metabolismo , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 113(19): 5311-6, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114546

RESUMEN

Viruses often interfere with the DNA damage response to better replicate in their hosts. The human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) protein has been reported to modulate the activity of the DNA repair structure-specific endonuclease subunit (SLX4) complex and to promote cell cycle arrest. Vpr also interferes with the base-excision repair pathway by antagonizing the uracil DNA glycosylase (Ung2) enzyme. Using an unbiased quantitative proteomic screen, we report that Vpr down-regulates helicase-like transcription factor (HLTF), a DNA translocase involved in the repair of damaged replication forks. Vpr subverts the DDB1-cullin4-associated-factor 1 (DCAF1) adaptor of the Cul4A ubiquitin ligase to trigger proteasomal degradation of HLTF. This event takes place rapidly after Vpr delivery to cells, before and independently of Vpr-mediated G2 arrest. HLTF is degraded in lymphocytic cells and macrophages infected with Vpr-expressing HIV-1. Our results reveal a previously unidentified strategy for HIV-1 to antagonize DNA repair in host cells.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Macrófagos/metabolismo , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Células HeLa , Humanos , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana
12.
Haematologica ; 103(6): 972-981, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29599206

RESUMEN

Polycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin. Here we investigated the effects of hydroxycarbamide and interferon-α treatments on the expression of erythroid membrane proteins in a cohort of 53 patients. Surprisingly, while both drugs tended to normalize calreticulin expression, proteomics analysis showed that hydroxycarbamide deregulated the expression of 53 proteins in red cell ghosts, with overexpression and downregulation of 37 and 16 proteins, respectively. Within over-expressed proteins, hydroxycarbamide was found to enhance the expression of adhesion molecules such as Lu/BCAM and CD147, while interferon-α did not. In addition, we found that hydroxycarbamide increased Lu/BCAM phosphorylation and exacerbated red cell adhesion to its ligand laminin. Our study reveals unexpected adverse effects of hydroxycarbamide on red cell physiology in polycythemia vera and provides new insights into the effects of this molecule on gene regulation and protein recycling or maturation during erythroid differentiation. Furthermore, our study shows deregulation of Lu/BCAM and CD147 that are two ubiquitously expressed proteins linked to progression of solid tumors, paving the way for future studies to address the role of hydroxycarbamide in tissues other than blood cells in myeloproliferative neoplasms.


Asunto(s)
Moléculas de Adhesión Celular/genética , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxiurea/farmacología , Proteínas de la Membrana/genética , Policitemia Vera/genética , Alelos , Biomarcadores , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/patología , Femenino , Humanos , Janus Quinasa 2/genética , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación , Policitemia Vera/sangre , Policitemia Vera/diagnóstico
14.
J Virol ; 87(7): 3729-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23325686

RESUMEN

Nef is a human immunodeficiency virus type 1 (HIV-1) auxiliary protein that plays an important role in virus replication and the onset of acquired immunodeficiency. Although known functions of Nef might explain its contribution to HIV-1-associated pathogenesis, how Nef increases virus infectivity is still an open question. In vitro, Nef-deleted viruses have a defect that prevents efficient completion of early steps of replication. We have previously shown that this restriction is not due to the absence of Nef in viral particles. Rather, a loss of function in virus-producing cells accounts for the lower infectivity of nef-deleted viruses compared to wild-type (WT) viruses. Here we used DiGE and iTRAQ to identify differences between the proteomes of WT and nef-deleted viruses. We observe that glucosidase II is enriched in WT virions, whereas Ezrin, ALG-2, CD81, and EHD4 are enriched in nef-deleted virions. Functional analysis shows that glucosidase II, ALG-2, and CD81 have no or only Nef-independent effect on infectivity. In contrast, Ezrin and EHD4 are involved in the ability of Nef to increase virus infectivity (referred to thereafter as Nef potency). Indeed, simultaneous Ezrin and EHD4 depletion in SupT1 and 293T virus-producing cells result in an ∼30 and ∼70% decrease of Nef potency, respectively. Finally, while Ezrin behaves as an inhibitory factor counteracted by Nef, EHD4 should be considered as a cofactors required by Nef to increase virus infectivity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ADN/metabolismo , VIH-1/genética , VIH-1/patogenicidad , Proteínas Nucleares/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/deficiencia , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Western Blotting , Electroforesis/métodos , Silenciador del Gen , Células HEK293 , VIH-1/metabolismo , Humanos , Proteómica , ARN Interferente Pequeño , Tetraspanina 28/metabolismo , Ultracentrifugación , Virión/metabolismo , alfa-Glucosidasas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
15.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589367

RESUMEN

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Asunto(s)
Síndromes Mielodisplásicos , Estructuras R-Loop , Humanos , Factor de Empalme U2AF/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme de ARN/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Factores de Transcripción/genética , Fosfoproteínas/genética
17.
APL Bioeng ; 5(2): 026104, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34027283

RESUMEN

Interactions between the different liver cell types are critical to the maintenance or induction of their function in vitro. In this work, human-induced Pluripotent Stem Cells (hiPSCs)-derived Liver Sinusoidal Endothelial Cells (LSECs) and Hepatocytes-Like Cells (HLCs) were cultured and matured in a microfluidic environment. Both cell populations were differentiated in Petri dishes, detached, and inoculated in microfluidic biochips. In cocultures of both cell types, the tissue has exhibited a higher production of albumin (3.19 vs 5.31 µg/mL/106 cells in monocultures and cocultures) as well as a higher inducibility CYP450 over monocultures of HLCs. Tubular-like structures composed of LSECs and positive for the endothelial marker PECAM1, as well as a tissue more largely expressing Stabilin-2 were detected in cocultures only. In contrast, monocultures exhibited no network and less specific endothelial markers. The transcriptomic analysis did not reveal a marked difference between the profiles of both culture conditions. Nevertheless, the analysis allowed us to highlight different upstream regulators in cocultures (SP1, EBF1, and GATA3) and monocultures (PML, MECP2, and NRF1). In cocultures, the multi-omics dataset after 14 days of maturation in biochips has shown the activation of signaling related to hepatic maturation, angiogenesis, and tissue repair. In this condition, inflammatory signaling was also found to be reduced when compared to monocultures as illustrated by the activation of NFKB and by the detection of several cytokines involved in tissue injury in the latter. Finally, the extracted biological processes were discussed regarding the future development of a new generation of human in vitro hepatic models.

18.
Blood Adv ; 4(7): 1464-1477, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32282884

RESUMEN

Murine-based cellular models have provided and continue to provide many useful insights into the fundamental mechanisms of erythropoiesis, as well as insights into the pathophysiology of inherited and acquired red cell disorders. Although detailed information on many aspects of these cell models is available, comprehensive proteomic data are lacking. This is a critical knowledge gap, as proteins are effectors of most biologic processes. To address this critical unmet need, proteomes of the murine cell lines Friend erythroleukemia (MEL), GATA1 erythroid (G1ER), and embryonic stem cell-derived erythroid progenitor (MEDEP) and proteomes of cultured murine marrow-derived erythroblasts at different stages of terminal erythroid differentiation were analyzed. The proteomes of MEDEP cells and primary murine erythroid cells were most similar, whereas those of MEL and G1ER cells were more distantly related. We demonstrated that the overall cellular content of histones does not decrease during terminal differentiation, despite strong chromatin condensation. Comparison of murine and human proteomes throughout terminal erythroid differentiation revealed that many noted transcriptomic changes were significantly dampened at the proteome level, especially at the end of the terminal differentiation process. Analysis of the early events associated with induction of terminal differentiation in MEDEP cells revealed divergent alterations in associated transcriptomes and proteomes. These proteomic data are powerful and valuable tools for the study of fundamental mechanisms of normal and disordered erythropoiesis and will be of broad interest to a wide range of investigators for making the appropriate choice of various cell lines to study inherited and acquired diseases of the erythrocyte.


Asunto(s)
Leucemia Eritroblástica Aguda , Proteómica , Animales , Eritroblastos , Células Eritroides , Eritropoyesis , Humanos , Ratones
19.
Nat Commun ; 11(1): 6127, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257663

RESUMEN

Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis.


Asunto(s)
Aminoácidos/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Caquexia , Diabetes Mellitus Tipo 2/metabolismo , Ayuno , Femenino , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Sarcopenia , Transaminasas/metabolismo
20.
Sci Rep ; 9(1): 9696, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273247

RESUMEN

Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.


Asunto(s)
Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicosiltransferasas/metabolismo , Lipopolisacáridos/química , Proteínas de la Membrana/metabolismo , Mutación , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Glicosiltransferasas/genética , Proteínas de la Membrana/genética , Microscopía de Fuerza Atómica , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda