Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 164(3): 526-37, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824660

RESUMEN

The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct and indirect pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions.


Asunto(s)
Ganglios Basales/fisiología , Mapeo Encefálico , Mesencéfalo/citología , Actividad Motora , Vías Nerviosas , Animales , Neuronas GABAérgicas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Optogenética
2.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496459

RESUMEN

Anxiety is a common symptom across psychiatric disorders, but the neurophysiological underpinnings of these symptoms remain unclear. This knowledge gap has prevented the development of circuit-based treatments that can target the neural substrates underlying anxiety. Here, we conducted an electrophysiological mapping study to identify neurophysiological activity associated with self-reported state anxiety in 17 subjects implanted with intracranial electrodes for seizure localization. Participants had baseline anxiety traits ranging from minimal to severe. Subjects volunteered to participate in an anxiety induction task in which they were temporarily exposed to the threat of unpredictable shock during intracranial recordings. We found that anterior insular beta oscillatory activity was selectively elevated during epochs when unpredictable aversive stimuli were being delivered, and this enhancement in insular beta was correlated with increases in self-reported anxiety. Beta oscillatory activity within the frontoinsular region was also evoked selectively by cues-predictive of threat, but not safety cues. Anterior insular gamma responses were less selective than gamma, strongly evoked by aversive stimuli and had weaker responses to salient threat and safety cues. On longer timescales, this gamma signal also correlated with increased skin conductance, a measure of autonomic state. Lastly, we found that direct electrical stimulation of the anterior insular cortex in a subset of subjects elicited self-reported increases in anxiety that were accompanied by enhanced frontoinsular beta oscillations. Together, these findings suggest that electrophysiologic representations of anxiety- related states and behaviors exist within anterior insular cortex. The findings also suggest the potential of reducing anterior insular beta activity as a therapeutic target for refractory anxiety-spectrum disorders.

3.
Neuropsychopharmacology ; 49(1): 163-178, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37369777

RESUMEN

Despite increasing prevalence and huge personal and societal burden, psychiatric diseases still lack treatments which can control symptoms for a large fraction of patients. Increasing insight into the neurobiology underlying these diseases has demonstrated wide-ranging aberrant activity and functioning in multiple brain circuits and networks. Together with varied presentation and symptoms, this makes one-size-fits-all treatment a challenge. There has been a resurgence of interest in the use of neurostimulation as a treatment for psychiatric diseases. Initial studies using continuous open-loop stimulation, in which clinicians adjusted stimulation parameters during patient visits, showed promise but also mixed results. Given the periodic nature and fluctuations of symptoms often observed in psychiatric illnesses, the use of device-driven closed-loop stimulation may provide more effective therapy. The use of a biomarker, which is correlated with specific symptoms, to deliver stimulation only during symptomatic periods allows for the personalized therapy needed for such heterogeneous disorders. Here, we provide the reader with background motivating the use of closed-loop neurostimulation for the treatment of psychiatric disorders. We review foundational studies of open- and closed-loop neurostimulation for neuropsychiatric indications, focusing on deep brain stimulation, and discuss key considerations when designing and implementing closed-loop neurostimulation.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Humanos , Estimulación Encefálica Profunda/métodos , Trastornos Mentales/terapia
4.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091832

RESUMEN

Background: Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) is an emerging treatment for severe, refractory obsessive-compulsive disorder (OCD). The therapeutic effects of DBS are hypothesized to be mediated by direct modulation of a distributed cortico-striato-thalmo-cortical network underlying OCD symptoms. However, the exact underlying mechanism by which DBS exerts its therapeutic effects still remains unclear. Method: In five participants receiving DBS for severe, refractory OCD (3 responders, 2 non-responders), we conducted a DBS On/Off cycling paradigm during the acquisition of functional MRI to determine the network effects of stimulation across a variety of bipolar configurations. We also performed tractography using diffusion-weighted imaging (DWI) to relate the functional impact of DBS to the underlying structural connectivity between active stimulation contacts and functional brain networks. Results: We found that therapeutic DBS had a distributed effect, suppressing BOLD activity within regions such as the orbitofrontal cortex, dorsomedial prefrontal cortex, and subthalamic nuclei compared to non-therapeutic configurations. Many of the regions suppressed by therapeutic DBS were components of the default mode network (DMN). Moreover, the estimated stimulation field from the therapeutic configurations exhibited significant structural connectivity to core nodes of the DMN. Conclusions: Therapeutic DBS for OCD suppresses BOLD activity within a distributed set of regions within the DMN relative to non-therapeutic configurations. We propose that these effects may be mediated by interruption of communication through structural white matter connections surrounding the DBS active contacts.

5.
Front Hum Neurosci ; 17: 1339340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38384668

RESUMEN

Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) has been used to treat refractory obsessive-compulsive disorder (OCD) and depression, but outcomes are variable, with some patients not responding to this form of invasive neuromodulation. A lack of benefit in some patients may be due to suboptimal positioning of DBS leads. Recently, studies have suggested that specific white matter tracts within the ALIC are associated with improved outcomes. Here, we present the case of a patient who initially had a modest improvement in OCD and depressive symptoms after receiving DBS within the ALIC. Subsequently, he underwent unilateral DBS lead repositioning informed by tractography targeting the ventrolateral and medial prefrontal cortex's connection with the mediodorsal thalamus. In this patient, we also conducted post-implant and post-repositioning diffusion imaging and found that we could successfully perform tractography even with DBS leads in place. Following lead repositioning into tracts predictive of benefit, the patient reached responder criteria for his OCD, and his depression was remitted. This case illustrates that tractography can potentially be used in the evaluation and planning of lead repositioning to achieve therapeutic outcomes.

6.
Brain Stimul ; 16(4): 1072-1082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37385540

RESUMEN

BACKGROUND: Humans routinely shift their sleepiness and wakefulness levels in response to emotional factors. The diversity of emotional factors that modulates sleep-wake levels suggests that the ascending arousal network may be intimately linked with networks that mediate mood. Indeed, while animal studies have identified select limbic structures that play a role in sleep-wake regulation, the breadth of corticolimbic structures that directly modulates arousal in humans remains unknown. OBJECTIVE: We investigated whether select regional activation of the corticolimbic network through direct electrical stimulation can modulate sleep-wake levels in humans, as measured by subjective experience and behavior. METHODS: We performed intensive inpatient stimulation mapping in two human participants with treatment resistant depression, who underwent intracranial implantation with multi-site, bilateral depth electrodes. Stimulation responses of sleep-wake levels were measured by subjective surveys (i.e. Stanford Sleepiness Scale and visual-analog scale of energy) and a behavioral arousal score. Biomarker analyses of sleep-wake levels were performed by assessing spectral power features of resting-state electrophysiology. RESULTS: Our findings demonstrated three regions whereby direct stimulation modulated arousal, including the orbitofrontal cortex (OFC), subgenual cingulate (SGC), and, most robustly, ventral capsule (VC). Modulation of sleep-wake levels was frequency-specific: 100Hz OFC, SGC, and VC stimulation promoted wakefulness, whereas 1Hz OFC stimulation increased sleepiness. Sleep-wake levels were correlated with gamma activity across broad brain regions. CONCLUSIONS: Our findings provide evidence for the overlapping circuitry between arousal and mood regulation in humans. Furthermore, our findings open the door to new treatment targets and the consideration of therapeutic neurostimulation for sleep-wake disorders.


Asunto(s)
Nivel de Alerta , Somnolencia , Animales , Humanos , Nivel de Alerta/fisiología , Sueño/fisiología , Vigilia/fisiología , Estimulación Eléctrica
7.
Curr Biol ; 31(3): 601-612.e3, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242389

RESUMEN

Vision is the primary sense humans use to evaluate and respond to threats. Understanding the biological underpinnings of the human threat response has been hindered by lack of realistic in-lab threat paradigms. We established an immersive virtual reality (VR) platform to simultaneously measure behavior, physiological state, and neural activity from the human brain using chronically implanted electrodes. Subjects with high anxiety showed increased visual scanning in response to threats as compared to healthy controls. In both healthy and anxious subjects, the amount of scanning behavior correlated with the magnitude of physiological arousal, suggesting that visual scanning behavior is directly linked to internal state. Intracranial electroencephalography (iEEG) recordings from three subjects suggested that high-frequency gamma activity in the insula positively correlates with physiological arousal induced by visual threats and that low-frequency theta activity in the orbitofrontal cortex (OFC) negatively correlates with physiological arousal induced by visual threats. These findings reveal a key role of eye movements and suggest that distinct insula and OFC activation dynamics may be important for detecting and adjusting human stress in response to visually perceived threats.


Asunto(s)
Encéfalo , Ansiedad , Trastornos de Ansiedad , Movimientos Oculares , Humanos , Corteza Prefrontal , Visión Ocular
10.
Neuroscience ; 296: 66-74, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25575943

RESUMEN

Decision making can be defined as the flexible integration and transformation of information from the external world into action. Recently, the development of novel genetic tools and new behavioral paradigms has made it attractive to study behavior of all kinds in rodents. By some perspectives, rodents are not an acceptable model for the study of decision making due to their simpler behavior often attributed to their less extensive cortical development when compared to non-human primates. We argue that decision making can be approached with a common framework across species. We review insights from comparative anatomy that suggest the expansion of cortical-striatal connectivity is a key development in evolutionary increases in behavioral flexibility. We briefly review studies that establish a role for corticostriatal circuits in integrative decision making. Finally, we provide an overview of a few recent, highly complementary rodent decision making studies using genetic tools, revealing with new cellular and temporal resolution how, when and where information can be integrated and compared in striatal circuits to influence choice.


Asunto(s)
Cuerpo Estriado/fisiología , Toma de Decisiones/fisiología , Ratones/fisiología , Primates/fisiología , Animales , Modelos Animales , Vías Nerviosas/fisiología , Especificidad de la Especie
11.
Neuron ; 83(2): 455-466, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25033185

RESUMEN

Sensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual responses. Although recent studies have begun to elucidate intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating system. Here, we find that optogenetic stimulation of the MLR in awake, head-fixed mice can induce both locomotion and increases in the gain of cortical responses. MLR stimulation below the threshold for overt movement similarly changed cortical processing, revealing that MLR's effects on cortex are dissociable from locomotion. Likewise, stimulation of MLR projections to the basal forebrain also enhanced cortical responses, suggesting a pathway linking the MLR to cortex. These studies demonstrate that the MLR regulates cortical state in parallel with locomotion.


Asunto(s)
Tronco Encefálico/fisiología , Locomoción/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Animales , Mesencéfalo/fisiología , Ratones , Vías Nerviosas/fisiología , Estimulación Luminosa
12.
Nat Neurosci ; 15(9): 1281-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22902719

RESUMEN

In changing environments, animals must adaptively select actions to achieve their goals. In tasks involving goal-directed action selection, striatal neural activity has been shown to represent the value of competing actions. Striatal representations of action value could potentially bias responses toward actions of higher value. However, no study to date has demonstrated the direct effect of distinct striatal pathways in goal-directed action selection. We found that transient optogenetic stimulation of dorsal striatal dopamine D1 and D2 receptor-expressing neurons during decision-making in mice introduced opposing biases in the distribution of choices. The effect of stimulation on choice was dependent on recent reward history and mimicked an additive change in the action value. Although stimulation before and during movement initiation produced a robust bias in choice behavior, this bias was substantially diminished when stimulation was delayed after response initiation. Together, our data suggest that striatal activity is involved in goal-directed action selection.


Asunto(s)
Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Channelrhodopsins , Conducta de Elección/fisiología , Cuerpo Estriado/metabolismo , ADN/genética , Dependovirus/genética , Fenómenos Electrofisiológicos , Modelos Logísticos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fibras Ópticas , Estimulación Luminosa , Plásmidos/genética , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/biosíntesis , Receptores de Dopamina D2/fisiología , Recompensa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda