Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2401080, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566553

RESUMEN

Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94‒98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.

2.
Small ; 19(10): e2206547, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36541782

RESUMEN

Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.

3.
Int Orthop ; 46(12): 2887-2895, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984476

RESUMEN

PURPOSE: Full-endoscopic spine surgery for degenerative lumbar diseases is growing in popularity and has shown favourable outcomes. Lumbar endoscopic unilateral laminotomy for bilateral decompression (LE-ULBD) has been used to treat lumbar spinal stenosis (LSS). However, studies comparing LE-ULBD to microscopic ULBD are lacking. This study compared the clinical efficacy and radiological outcomes between the LE-ULBD and microscopic ULBD. METHODS: The study retrospectively enrolled patients undergoing either LE-ULBD or microscopic ULBD for spinal stenosis at the L4-L5 level. The demographic data, operative details, radiological images, clinical outcomes, and complications of patients from the two groups were compared through matched-pairs analysis. The minimum follow-up duration was 24 months. RESULTS: There were 93 patients undergoing either LE-ULBD (n = 42) or microscopic ULBD (n = 51). The patient demographics were similar between the two groups. The LE-ULBD group had significantly less estimated blood loss, less analgesic use, and shorter hospitalization duration (P < .05). The endoscopic group had a significantly lower visual analog scale for back pain at all follow-up intervals compared with the microscopic group (P < .05). There were no significant differences in leg pain or Oswestry Disability Index. The cross-section area of the spinal canal was significantly wider after microscopic ULBD. There were no significant differences in post-operative degenerative changes in disc height, translational motion, or facet preservation rate. CONCLUSIONS: LE-ULBD is comparable in clinical and radiological outcomes with enhanced recovery for single-level LSS. The endoscopic approach might further minimize tissue injury and enhance post-operative recovery.


Asunto(s)
Laminectomía , Estenosis Espinal , Humanos , Laminectomía/efectos adversos , Estenosis Espinal/cirugía , Estudios Retrospectivos , Endoscopía/efectos adversos , Descompresión
4.
Nanotechnology ; 28(23): 235201, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28437251

RESUMEN

Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ∼180 Ω sq-1 and ∼88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.

5.
Phys Chem Chem Phys ; 17(4): 2457-63, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25491727

RESUMEN

This paper investigates the importance of substituent placement when designing low-molecular mass π-organogelators. The electron-deficient NO2 substituent was systematically added to novel T-shaped phenazines to examine electronic as well as assembly properties. This T-shaped molecular platform promotes selective electronic tuning, which can be theoretically analyzed by examining the system's frontier molecular orbitals. Electronic properties were characterized by UV-vis spectroscopy and cyclic voltammetry, and comparisons were made based on number and placement of the NO2 group. Computational chemistry (B3LYP/6-31G*) was employed for geometry optimizations, and to generate molecular orbital diagrams for all systems. The most noticeable influence of NO2 position was found for two molecules with four NO2 groups placed at different locations about the molecule (T-34dNT and T-35dNT). A 0.13 eV difference in ELUMO was observed while EHOMO was not significantly impacted by this change only in NO2 placement. Interestingly and unexpectedly, the photophysical properties and solvent-dependent gelation properties were considerably different for T-34dNT and T-35dNT. T-34dNT exhibited a unique fluorescence (FL) solvatochromism, with FL intensity and maxima dependent on solvent polarity. This result is indicative of intramolecular charge transfer. In addition, long tailing at the solid-state absorption of T-34dNT suggests the presence of intermolecular charge transfer. The gelation of T-34dNT produced chromism ranging from red to orange to yellow when the solvents changed from acetonitrile to ethyl acetate to cyclohexane, respectively. T-35dNT gels in these solvents did not exhibit any of the same properties. Xerogel morphology characterizations were carried out using three different solvents for both T-34dNT and T-35dNT. In the case of T-34dNT, striking differences in the morphology were detected by field-emission scanning electron microscopy (FE-SEM). We conclude that numbers of substituents are not the only consideration in effective molecular design for organogelators, but that substituent position plays a critical role in certain fundamental properties of these systems.

6.
RSC Adv ; 14(9): 6285-6291, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375013

RESUMEN

In this work, we report alkoxy substituted benzil based all organic room temperature phosphors which showed crystallization induced phosphorescence (CIP). Nine title compounds were prepared with various alkyl lengths (OCnH2n+1: n = 8-16) and the effect of alkyl side group length on the phosphorescence performance was investigated, as compared to p-anisil. It was found that both phosphorescence quantum yield and lifetime increased concomitantly as the alkyl length increased up to nonyloxy (BZL-OC9). Further increase in the carbon number caused the phosphorescence performance to deteriorate due to greater conformational freedom of the side groups. An incredible quantum yield of 70% was achieved for BZL-OC9. A promising finding is that the increased quantum yield was accompanied by the increase in the lifetime relative to p-anisil, which has been historically challenging. Single crystallography coupled with UV-Vis spectroscopy revealed that a higher level of intermolecular π-π interactions was observed from p-anisil while more alkyl interactions with less intermolecular π-orbital overlap were found for BZL-OC8. As a result, molecular rigidification with less phosphorescence quenching was achieved for BZL-OC8 leading to enhanced performance. A precipitation study on a dichloromethane solution as a function of the content of MeOH (poor solvent) proved that the emission of the BZL-OCn system is truly aggregation-induced. The current work demonstrates that strategic side group engineering could be a promising approach to developing high-performance all organic phosphors as well as improving the properties of existing phosphors.

7.
ACS Appl Mater Interfaces ; 16(13): 16096-16105, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502716

RESUMEN

Tracking changes in the chemical state of transition metals in alkali-ion batteries is crucial to understanding the redox chemistry during operation. X-ray absorption spectroscopy (XAS) is often used to follow the chemistry through observed changes in the chemical state and local atomic structure as a function of the state-of-charge (SoC) in batteries. In this study, we utilize an operando X-ray emission spectroscopy (XES) method to observe changes in the chemical state of active elements in batteries during operation. Operando XES and XAS were compared by using a laboratory-scale setup for four different battery systems: LiCoO2 (LCO), Li[Ni1/3Co1/3Mn1/3]O2 (NMC111), Li[Ni0.8Co0.1Mn0.1]O2 (NMC811), and LiFePO4 (LFP) under a constant current charging the battery in 10 h (C/10 charge rate). We show that XES, despite narrower chemical shifts in comparison to XAS, allows us to fingerprint the battery SOC in real time. We further demonstrate that XES can be used to track the change in net spin of the probed atoms by analyzing changes in the emission peak shape. As a test case, the connection between net spin and the local chemical and structural environment was investigated by using XES and XAS in the case of electrochemically delithiated LCO in the range of 2-10% lithium removal.

8.
Adv Mater ; 36(4): e2307402, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989225

RESUMEN

For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.

9.
Phys Chem Chem Phys ; 15(16): 5967-74, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23493849

RESUMEN

This paper reports novel pyrazine-acenes containing electron-deficient heteroaromatic π-extenders, such as pyridine, pyrazine, and benzothiadiazole, directly fused with pyrazine. Electronic properties of these systems were characterized by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. Computational electronic property evaluation of all experimentally synthesized compounds is provided, and is coupled with electronic calculations of closely related compounds that were not synthetically feasible. Our theoretical results provide insight into the overall analysis and interpretation of the experimentally observed trends. In this study, we found a systematic decrease in the LUMO energy (E(LUMO)) with an increasing number of imine functions in the π-extender. Additionally, when comparing the pyrazine-acene containing pyrazine π-extender to a reference compound with C≡N peripheral substituents, we found that the imine function is comparable to the C≡N substituent in lowering E(LUMO). The most dramatic E(LUMO) lowering was experimentally observed using dibromobenzothiadiazole as a π-extender. In all cases, the HOMO energy (EHOMO) was negligibly affected, thus we found options for electronic property control based solely on E(LUMO) manipulation. This is computationally validated by an examination of the molecular orbitals in which the LUMO orbital was found predominantly on the π-extender section of the molecules, while the HOMO orbital was localized away from the π-extender. Interestingly, the self-assembly of all the experimentally synthesized compounds showed excellent one-dimensional fiber formation in spite of their large π-core framework. These fibers were characterized by atomic force microscopy and UV-Vis spectroscopy.

10.
Heliyon ; 9(12): e22560, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107309

RESUMEN

Small-sized ultra-precise optical devices require compact compliant ortho-planar springs (COPS) aka. flexure springs, for precise, frictionless linear motion which depends highly on the design. A self-developed arm-hinge-linked design, named "Panto-style" flexure spring was optimized by selecting 5 design parameters (thickness: t, hinge width: W, arm length 1 and 2: L1 and L2, arm angle: Ó¨) and constructing sets of design of experiments (DOEs). Signal-to-noise ratio (SNR) and response surface model (RSM) regression were obtained in terms of axial deformation. The highest response from the main effects plot was the thickness (t), followed by hinge width (W). The angle of the arm (Ó¨), was considered a non-relevant parameter. The parameters optimization was implemented with constraint input and output. Kinetostatic performances (axial/radial deformations, and stress) were predicted, validated, and compared (RSM, KNN, FE simulations, and experiments) using the optimized design. The average value of KNN and RSM (KNN + RSM) increased the accuracy of axial deformation value compared to RSM alone. To conclude, RSM design parameter optimization followed by KNN + RSM has successfully predicted the output results (axial/radial deformation and stress) confirmed both numerically and experimentally.

11.
ACS Appl Mater Interfaces ; 15(2): 3047-3053, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36599123

RESUMEN

Thermoelectric inorganic films are flexible when sufficiently thin. By removing the substrate, that is, making them free-standing, the flexibility of thermoelectric films can be enhanced to the utmost extent. However, studies on the flexibility of free-standing thermoelectric inorganic films have not yet been reported. Herein, the high thermoelectric performance and flexibility of free-standing thermoelectric Ag2Se films are reported. Free-standing Ag2Se films with a thickness of 25.0 ± 3.9 µm exhibited an in-plane zT of 0.514 ± 0.060 at room temperature. These films exhibited superior flexibility compared to Ag2Se films constrained on a substrate. The flexibility of the Ag2Se films was systematically investigated in terms of bending strain, bending radius, thickness, and elastic modulus. Using free-standing Ag2Se films, a substrate-free, flexible thermoelectric generator was fabricated. The energy-harvesting capacity of the thermoelectric generator was also demonstrated.

12.
Adv Mater ; 35(24): e2300230, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929364

RESUMEN

High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.

13.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896285

RESUMEN

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly.

14.
J Neuroimaging ; 32(2): 245-252, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767684

RESUMEN

BACKGROUND AND PURPOSE: FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL-FIRST) is a widely used and well-validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL-FIRST's algorithm is based on shape models derived from non-MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL-FIRST on MRIs from people with multiple sclerosis (PwMS). METHODS: FSL-FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. RESULTS: In the entire quantitative volumetric group, the mean volumetric error of FSL-FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2  = 18.14, p < .01 and χ2  = 64.89, p < .001, respectively). Finally, thalamus volume error was negatively associated with degree of atrophy, such that smaller thalami were systematically overestimated (r = -.28, p < .001). CONCLUSIONS: In PwMS, FSL-FIRST thalamic segmentation miscalculates thalamic volumetry in a predictable fashion, and may be biased to overestimate highly atrophic thalami. As such, it is recommended that segmentations be reviewed and corrected manually when appropriate for specific studies.


Asunto(s)
Esclerosis Múltiple , Algoritmos , Atrofia/diagnóstico por imagen , Atrofia/patología , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
15.
Langmuir ; 27(23): 14615-20, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22032538

RESUMEN

In this paper, we report self-assembly of tetrachloroacenes containing pyrazine moieties. The title compounds, phenazine and bisphenazine substituted with four chlorine atoms for increased electron deficiency and alkyloxy side groups for solubility, demonstrated excellent gelation ability in select organic solvents. The assembled structure of these two series of compounds exhibited a morphological difference. Tetrachlorophenazine containing hexadecyloxy side groups induced rigid microbelts, while more extensive entanglement of thinner, more flexible fibers was observed from tetrachlorobisphenazine compounds, characterized by scanning electron microscopy. Tetrachlorophenazine and tetrachlorobisphenazine gels showed quite different emission behavior compared to their solution state. A strong, red-shifted emission compared to that of its diluted solution state was observed from the gel of tetrachlorophenazine. We have ascertained this is a result of J-aggregate formation. From the crystal structure of a model compound, it was found that tetrachlorophenazine cores adopt π-π stacking with a short stacking distance of 3.38 Å, enabling significant intermolecular π-orbital overlap. In addition, the π-cores were displaced longitudinally, indicative of J-aggregate formation. Surprisingly, the gel of tetrachlorobisphenazine showed fluorescence comparable to that of its dilute solution, suggesting that such a close packing of the π-cores may not be possible due to the bulky tert-butyl substituents.


Asunto(s)
Fenazinas/síntesis química , Pirazinas/química , Estructura Molecular , Tamaño de la Partícula , Fenazinas/química
16.
RSC Adv ; 11(58): 36821-36825, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35494373

RESUMEN

An aerobic Cu-promoted oxidative dehydrosulfurative carbon-oxygen cross-coupling of 3,4-dihydropyrimidin-1H-2-thiones (DHPMs) with both aliphatic and aromatic alcohols is described. Together with the ready availability of DHPMs and both alcohols, the method furnishes facile access to biologically valuable 2-alkoxypyrimidines with rapid diversification.

17.
ACS Appl Mater Interfaces ; 13(29): 34074-34083, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270893

RESUMEN

Iron phosphide with high specific capacity has emerged as an appealing candidate for next-generation lithium-ion battery anodes. However, iron phosphide could undergo conversion reactions and generally suffer from a rapid capacity degradation upon cycling due to its structure pulverization. Chemomechanical breakdown of iron phosphide due to its rigidity has been a challenge to fully realizing its electrochemical performance. To address this challenge, we report here on an enticing opportunity: a flexible, free-standing iron phosphide anode with Fe2P nanoparticles confined in carbon nanofibers may overcome existing challenges. For the synthesis, we introduce a facile electrospinning strategy that enables in situ formation of Fe2P within a carbon matrix. Such a carbon matrix can effectively minimize the structure change of Fe2P particles and protect them from pulverization, allowing the electrodes to retain a free-standing structure after long-term cycling. The produced electrodes showed excellent electrochemical performance in lithium-ion half and full cells, as well as in flexible pouch cells. These results demonstrate the successful development of iron phosphide materials toward high capacity, light weight, and flexible energy storage.

18.
Langmuir ; 26(16): 13630-6, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20695613

RESUMEN

This paper reports the electronic and organogelation properties of novel T-shaped bisphenazines functionalized with alkyl side groups and small peripheral cyano (CN) or aldehyde (CHO) substituents. UV-vis spectroscopy and cyclic voltammetry show the effect of the position, type, and number of the peripheral substituents on the electronic properties of the entire system. Interesting organogelation properties including a thixotropic behavior were observed from these T-shaped bisphenazines. We describe important findings from an in-depth characterization on the fibers formed by organogelation: (i) The position of the peripheral substituents influences the fiber morphology by modulating the intermolecular CN (or CHO) interaction and the pi-pi stacking. (ii) Compounds with CHO groups form islands of fiber aggregates, which is not the case for compounds with CN groups. (iii) Decyl-substituted compounds show higher gelation temperatures (i.e., produce stronger gels) than hexadecyl-substituted ones. (iv) The thixotropic behavior originates from an extensive three-dimensional entanglement of very thin, flexible fibers.

19.
Phys Chem Chem Phys ; 12(39): 12727-33, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20734013

RESUMEN

The current study employs both theoretical and experimental methods to characterize the electronic properties associated with peripheral substitution on asymmetric phenazine and bisphenazine systems. Substituent groups include F, Cl, Br, and NO(2) with substitutions made at different positions on the heteroaromatic rings in order to assess the effects of substituent type as well as substituent position on the electronic properties. A comprehensive investigation on halogen substituents was conducted to determine the efficacy of either Cl or Br, specifically these substituents' ability to lower LUMO energies relative to F. HOMO and LUMO energy levels have been theoretically characterized using Density Functional Theory (B3LYP) with both 6-31G* and 6-31+G* basis sets. Theoretical results are compared to results obtained using UV-Vis spectroscopy and cyclic voltammetry. Additionally, a theoretical comparison of the smaller, phenazine molecule and the larger bisphenazine system has been conducted to ascertain whether the smaller system can be used to model the electronic properties of the larger molecule.

20.
Sci Rep ; 10(1): 15586, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973245

RESUMEN

The demand for high-capacity lithium-ion batteries (LIB) in electric vehicles has increased. In this study, optimization to maximize the specific energy density of a cell is conducted using the LIB electrochemical model and sequential approximate optimization (SAO). First, the design of experiments is performed to analyze the sensitivity of design factors important to the specific energy density, such as electrode and separator thicknesses, porosity, and particle size. Then, the design variables of the cell are optimized for maximum specific energy density using the progressive quadratic response surface method (PQRSM), which is one of the SAO techniques. As a result of optimization, the thickness ratio of the electrode was optimized and the porosity was reduced to keep the specific energy density high, while still maintaining the specific power density performance. This led to an increase in the specific energy density of 56.8% and a reduction in the polarization phenomenon of 11.5%. The specific energy density effectively improved through minimum computation despite the nonlinearity of the electrochemical model in PQRSM optimization.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda