Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 562(7725): 86-90, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224747

RESUMEN

Topological operations around exceptional points1-8-time-varying system configurations associated with non-Hermitian singularities-have been proposed as a robust approach to achieving far-reaching open-system dynamics, as demonstrated in highly dissipative microwave transmission3 and cryogenic optomechanical oscillator4 experiments. In stark contrast to conventional systems based on closed-system Hermitian dynamics, environmental interferences at exceptional points are dynamically engaged with their internal coupling properties to create rotational stimuli in fictitious-parameter domains, resulting in chiral systems that exhibit various anomalous physical phenomena9-16. To achieve new wave properties and concomitant device architectures to control them, realizations of such systems in application-abundant technological areas, including communications and signal processing systems, are the next step. However, it is currently unclear whether non-Hermitian interaction schemes can be configured in robust technological platforms for further device engineering. Here we experimentally demonstrate a robust silicon photonic structure with photonic modes that transmit through time-asymmetric loops around an exceptional point in the optical domain. The proposed structure consists of two coupled silicon-channel waveguides and a slab-waveguide leakage-radiation sink that precisely control the required non-Hermitian Hamiltonian experienced by the photonic modes. The fabricated devices generate time-asymmetric light transmission over an extremely broad spectral band covering the entire optical telecommunications window (wavelengths between 1.26 and 1.675 micrometres). Thus, we take a step towards broadband on-chip optical devices based on non-Hermitian topological dynamics by using a semiconductor platform with controllable optoelectronic properties, and towards several potential practical applications, such as on-chip optical isolators and non-reciprocal mode converters. Our results further suggest the technological relevance of non-Hermitian wave dynamics in various other branches of physics, such as acoustics, condensed-matter physics and quantum mechanics.

2.
Nanotechnology ; 31(26): 265302, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32131063

RESUMEN

The etch characteristics of Si and TiO2 nanostructures for optical devices were investigated using pulse biased inductively coupled plasmas (ICP) with SF6/C4F8/Ar and BCl3/Ar, respectively, and the results were compared with those etched using continuous wave (CW) biased ICP. By using pulse biasing compared to CW biasing in the etching of the line/pillar nanostructures with various aspect ratios, there was a reduction of the aspect ratio dependent etching (ARDE) and therefore, uniform etch depths for nanostructures with different pattern widths, as well as the improvement of the etch profiles without any notching, were obtained not only for silicon nanostructures but also for TiO2 nanostructures. The investigation has determined that the improvement of etch profiles and reduced ARDE effect when using pulse biasing are related to the decreased surface charging caused by neutralization of the surface and the improved radical adsorption (or etch byproduct removal) on the etched surfaces during the pulse-off period for pulse biasing compared to CW biasing.

3.
Nanotechnology ; 30(4): 045301, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30457976

RESUMEN

A low-temperature laser crystallization is newly devised for producing polycrystalline silicon (poly-Si) thin films of low-loss, low surface roughness enough for nanoscale patterning, applicable to practical Si metasurface elements on complementary metal-oxide semiconductor (CMOS) electronic architectures in visible lights. The method is based on dielectric encapsulation of an amorphous Si film and subsequent laser-induced local crystallization. Such poly-Si thin film yields order-of-magnitude smaller surface roughness and grain size than those obtained with the conventional laser annealing processes. The mechanism of the formation of small and uniform crystalline grains during solidification is studied to ensure the smooth surfaces enough for nanoscale patterning. By obtaining root mean square of surface roughness <2.49 nm and extinction coefficient <4.8 × 10-2 at 550 nm, visible metasurface color-filter elements are experimentally demonstrated with the resonant transmission-peak efficiency approaching ∼85%. This low-loss poly-Si metasurface is favorably compatible with embedded CMOS electronic architectures in contrast to the conventional thermal annealing processes that often cause failure of electrical device functionalities due to delamination and material-property degradation problems. The proposed fabrication in this study provides a practical method for further development of various Si metasurfaces in the visible domain and their integration with CMOS electronic devices as well.

4.
Nano Lett ; 17(5): 3159-3164, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28388090

RESUMEN

We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

5.
Nat Commun ; 14(1): 5602, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699876

RESUMEN

The overall size of an optical system is limited by the volume of the components and the internal optical path length. To reach the limits of miniaturization, it is possible to reduce both component volume and path length by combining the concepts of metasurface flat optics and folded optics. In addition to their subwavelength component thickness, metasurfaces enable bending conventional folded geometries off axis beyond the law of reflection. However, designing metasurfaces for highly off-axis illumination with visible light in combination with a high numerical aperture is non-trivial. In this case, traditional designs with gradient metasurfaces exhibit low diffraction efficiencies and require the use of deep-subwavelength, high-index, and high-aspect-ratio semiconductor nanostructures that preclude inexpensive, large-area nanofabrication. Here, we describe a design approach that enables the use of low-index (n ≈ 1.5), low-aspect ratio structures for off-axis metagratings that can redirect and focus visible light (λ = 532 nm) with near-unity efficiency. We show that fabricated optical elements offer a very large angle-of-view (110°) and lend themselves to scalable fabrication by nano-imprint lithography.

6.
Nat Commun ; 13(1): 7597, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494441

RESUMEN

The integration of bottom-up fabrication techniques and top-down methods can overcome current limits in nanofabrication. For such integration, we propose a gradient area-selective deposition using atomic layer deposition to overcome the inherent limitation of 3D nanofabrication and demonstrate the applicability of the proposed method toward large-scale production of materials. Cp(CH3)5Ti(OMe)3 is used as a molecular surface inhibitor to prevent the growth of TiO2 film in the next atomic layer deposition process. Cp(CH3)5Ti(OMe)3 adsorption was controlled gradually in a 3D nanoscale hole to achieve gradient TiO2 growth. This resulted in the formation of perfectly seamless TiO2 films with a high-aspect-ratio hole structure. The experimental results were consistent with theoretical calculations based on density functional theory, Monte Carlo simulation, and the Johnson-Mehl-Avrami-Kolmogorov model. Since the gradient area-selective deposition TiO2 film formation is based on the fundamentals of molecular chemical and physical behaviours, this approach can be applied to other material systems in atomic layer deposition.

7.
Opt Lett ; 36(10): 1920-2, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21593935

RESUMEN

We designed, fabricated, and characterized varifocal microlenses, whose focal length varies along with the deformation of a transparent elastomer membrane under hydraulic pressure tailored by electroactive polymer actuators. The microfluidic channel of the microlens was designed to be embedded between silicon and glass so that transient fluctuation of the optical fluid and elastomer membrane is effectively suppressed, and thus the microlens is optically stabilized in a reduced time. Multilayered poly(vinylidene fluoride-trifluoroethylene-clorotrifluoroethylene) actuators were also developed and integrated onto the microfluidic chambers. We demonstrated that the developed microlenses are suitable for use in microimaging systems to make their foci tunable.

8.
Nat Commun ; 11(1): 3916, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764547

RESUMEN

The demand for essential pixel components with ever-decreasing size and enhanced performance is central to current optoelectronic applications, including imaging, sensing, photovoltaics and communications. The size of the pixels, however, are severely limited by the fundamental constraints of lightwave diffraction. Current development using transmissive filters and planar absorbing layers can shrink the pixel size, yet there are two major issues, optical and electrical crosstalk, that need to be addressed when the pixel dimension approaches wavelength scale. All these fundamental constraints preclude the continual reduction of pixel dimensions and enhanced performance. Here we demonstrate subwavelength scale color pixels in a CMOS compatible platform based on anti-Hermitian metasurfaces. In stark contrast to conventional pixels, spectral filtering is achieved through structural color rather than transmissive filters leading to simultaneously high color purity and quantum efficiency. As a result, this subwavelength anti-Hermitian metasurface sensor, over 28,000 pixels, is able to sort three colors over a 100 nm bandwidth in the visible regime, independently of the polarization of normally-incident light. Furthermore, the quantum yield approaches that of commercial silicon photodiodes, with a responsivity exceeding 0.25 A/W for each channel. Our demonstration opens a new door to sub-wavelength pixelated CMOS sensors and promises future high-performance optoelectronic systems.

9.
Water Res ; 42(8-9): 2043-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18207489

RESUMEN

Halogenated disinfection byproducts (DBPs) may undergo reduction reactions at the corroded pipe wall in drinking water distribution systems consisting of cast or ductile iron pipe. Iron pipe corrosion products were obtained from several locations within two drinking water distribution systems. Crystalline-phase composition of freeze-dried corrosion solids was analyzed using X-ray diffraction, and ferrous and ferric iron contents were determined via multiple extraction methods. Batch experiments demonstrated that trichloronitromethane (TCNM), a non-regulated DBP, is rapidly reduced in the presence of pipe corrosion solids and that dissolved oxygen (DO) slows the reaction. The water-soluble iron content of the pipe solids is the best predictor of TCNM reaction rate constant. These results indicate that highly reactive DBPs that are able to compete with oxygen and residual disinfectant for ferrous iron may be attenuated via abiotic reduction in drinking water distribution systems.


Asunto(s)
Corrosión , Hidrocarburos Clorados/química , Hierro/química , Agua/química , Cristalografía por Rayos X , Cinética
11.
Chemosphere ; 66(11): 2127-35, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17095038

RESUMEN

Iron metal (Fe(0)) is a potent reductant capable of reducing a wide variety of halogenated organic compounds including disinfection byproducts (DBPs). These reduction reactions may play a role in DBP fate in iron water mains and potentially could be exploited to remove DBPs from drinking water or wastewater in a packed-bed configuration. Oxidants (i.e., dissolved oxygen (DO) and chlorine) present in the water, however, may decrease the DBP degradation rate by competing for reactive sites and rapidly aging or corroding the iron surface. Thus, batch experiments were performed to investigate the effect of DO on the degradation rates of selected DBPs by Fe(0). Experiments were performed under anaerobic conditions, in initially oxygen saturated buffer without DO control, and under controlled DO (approximately 4.0 or 8.0 mg l(-1)) conditions. The effect of short-term (25-105 min) iron aging in DO-containing buffer on DBP degradation rate also was investigated in separate experiments. For fresh Fe(0), the degradation rates of trichloronitromethane (TCNM) and trichloroacetonitrile (TCAN) in initially oxygen saturated buffer were similar to their respective rates under anaerobic conditions. The degradation rate of 1,1,1-trichloropropanone (1,1,1-TCP), however, decreased significantly in the presence of DO and the effect was proportional to DO concentration in the controlled DO experiments. For a DO concentration of 4 mg l(-1), the degradation rate of the three DBPs was greater for longer aging times as compared to their respective rates after 25 min, suggesting the formation of a mineral phase that increased reactivity. For a DO concentration of 8 mg l(-1), the effects of increasing aging time were mixed. TCNM degradation rates were stable for all aging times and comparable to that under anaerobic conditions. The TCAN and 1,1,1-TCP degradation rates, however, tended to decrease with increasing aging time. These results suggest that the reduction of highly reactive DBPs by Fe(0) will not be affected by the presence of DO but that the reaction rates will be slowed by DO for DBPs with slower degradation kinetics.


Asunto(s)
Hidrocarburos Clorados/química , Hierro/química , Oxígeno/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cromatografía de Gases , Cromatografía Liquida , Desinfección , Cinética , Oxidación-Reducción , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda