Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Rev Lett ; 129(9): 094801, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36083652

RESUMEN

Laser-plasma accelerators outperform current radio frequency technology in acceleration strength by orders of magnitude. Yet, enabling them to deliver competitive beam quality for demanding applications, particularly in terms of energy spread and stability, remains a major challenge. In this Letter, we propose to combine bunch decompression and active plasma dechirping for drastically improving the energy profile and stability of beams from laser-plasma accelerators. Realistic start-to-end simulations demonstrate the potential of these postacceleration phase-space manipulations for simultaneously reducing an initial energy spread and energy jitter of ∼1-2% to ≲0.1%, closing the beam-quality gap to conventional acceleration schemes.

2.
Nature ; 530(7589): 190-3, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26829223

RESUMEN

Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam. To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. Here, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius--by a discharge capillary-based active plasma lens--into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.

3.
Phys Rev Lett ; 122(8): 084801, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932604

RESUMEN

Guiding of relativistically intense laser pulses with peak power of 0.85 PW over 15 diffraction lengths was demonstrated by increasing the focusing strength of a capillary discharge waveguide using laser inverse bremsstrahlung heating. This allowed for the production of electron beams with quasimonoenergetic peaks up to 7.8 GeV, double the energy that was previously demonstrated. Charge was 5 pC at 7.8 GeV and up to 62 pC in 6 GeV peaks, and typical beam divergence was 0.2 mrad.

4.
Opt Lett ; 43(12): 2776-2779, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905686

RESUMEN

Electrically discharged plasma structures, typically several centimeters in length and sub-millimeter in diameter, have been applied to guide laser pulses in laser plasma accelerators and to focus ion and relativistic electron beams in compact, radially symmetric transport configurations. Knowledge of the on-axis plasma density is critical. Traditional density interferometry has been ineffective for these laser-machined structures, while group velocity delay (GVD) techniques involve combining two laser paths with corresponding alignment complexities and stability sensitivities. Here the GVD technique is advanced to a common-path two-color interferometer configuration performed in the spectral domain of a broad-bandwidth femtosecond laser. Multi-shot tracking of the phase is not required, and the common path assures improved stability. This in situ technique was validated on 15 mm long plasma structures, measuring electron densities of 1017-1018 cm-3 for various fill pressures.

5.
Phys Rev Lett ; 121(26): 264802, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636157

RESUMEN

Mitigation of the beam hose instability in plasma-based accelerators is required for the realization of many applications, including plasma-based colliders. The hose instability is analyzed in the blowout regime including plasma ion motion, and ion motion is shown to suppress the hose instability by inducing a head-to-tail variation in the focusing force experienced by the beam. Hence, stable acceleration in plasma-based accelerators is possible, while, by use of proper bunch shaping, minimizing the energy spread and preserving the transverse beam emittance.

6.
Phys Rev Lett ; 120(15): 154801, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756877

RESUMEN

Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

7.
Phys Rev Lett ; 119(24): 244801, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29286723

RESUMEN

The beam hosing instability is analyzed theoretically for a witness beam in the quasilinear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

8.
Phys Rev Lett ; 119(10): 104801, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949165

RESUMEN

Single-shot, charge-dependent emittance measurements of electron beams generated by a laser plasma accelerator (LPA) reveal that shock-induced density down-ramp injection produces beams with normalized emittances a factor of 2 smaller than beams produced via ionization injection. Such a comparison is made possible by the tunable LPA setup, which allows electron beams with nearly identical central energy and peak spectral charge density to be produced using the two distinct injection mechanisms. Parametric measurements of this type are essential for the development of LPA-based applications which ultimately require high charge density and low emittance.

9.
Opt Lett ; 41(23): 5503-5506, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906224

RESUMEN

We present an analytical formalism elucidating how information is stored in chirped optical probes by describing the effects of sinusoidal temporal modulations on the electric field. We show that the modulations produce spectral sidebands which can be interpreted as temporal sidebands due to the time-wavelength mapping, an effect we call temporally encoded spectral shifting (TESS). A derivation is presented for the case of chirped-pulse spectral interferometry showing how to recover both the amplitude and the periodicity of the modulation from a Fourier transform of the interferogram. The TESS effect, which provides an intuitive picture for interpreting pump-probe experiments with chirped pulses, is illustrated for probing wakefields from a laser-plasma accelerator.

10.
Phys Rev Lett ; 114(14): 145003, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910131

RESUMEN

An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of the laser pulse and can be submillimeter, while preserving high undulator strength. The electron trajectories in the undulator are examined, expressions for the undulator strength are presented, and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered for greater tunability of the undulator period and strength.

11.
Phys Rev Lett ; 114(10): 105003, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25815939

RESUMEN

Radiation pressure acceleration is a highly efficient mechanism of laser-driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

12.
Phys Rev Lett ; 115(18): 184802, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565471

RESUMEN

Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

13.
Phys Rev Lett ; 112(12): 125001, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24724654

RESUMEN

A method is proposed to generate femtosecond, ultralow emittance (∼10-8 m rad), electron beams in a laser-plasma accelerator using two lasers of different colors. A long-wavelength pump pulse, with a large ponderomotive force and small peak electric field, excites a wake without fully ionizing a high-Z gas. A short-wavelength injection pulse, with a small ponderomotive force and large peak electric field, copropagating and delayed with respect to the pump laser, ionizes a fraction of the remaining bound electrons at a trapping wake phase, generating an electron beam that is accelerated in the wake.

14.
Phys Rev Lett ; 113(24): 245002, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541775

RESUMEN

Multi-GeV electron beams with energy up to 4.2 GeV, 6% rms energy spread, 6 pC charge, and 0.3 mrad rms divergence have been produced from a 9-cm-long capillary discharge waveguide with a plasma density of ≈7×10¹7 cm⁻³, powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided plasma structures to achieve the same electron beam energy. A detailed comparison between experiment and simulation indicates the sensitivity in this regime of the guiding and acceleration in the plasma structure to input intensity, density, and near-field laser mode profile.

15.
Opt Lett ; 38(20): 4026-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24321912

RESUMEN

Laser-produced surface high-harmonic generation is an attractive source of extreme ultraviolet radiation due to its coherent properties and high peak power. By operating at subrelativistic laser intensities in the coherent wake emission regime, the harmonic spectrum was experimentally studied versus laser properties. At higher laser intensities (>10(17) W/cm(2)) a higher spectral cutoff was observed, with accompanying blueshifting and spectral broadening of the individual orders. A model based on an expanding critical surface provides qualitative agreement with the observations.

16.
Phys Rev Lett ; 108(9): 094801, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463644

RESUMEN

Laser plasma accelerators have produced femtosecond electron bunches with a relative energy spread ranging from 100% to a few percent. Simulations indicate that the measured energy spread can be dominated by a correlated spread, with the slice spread significantly lower. Measurements of coherent optical transition radiation are presented for broad-energy-spread beams with laser-induced density and momentum modulations. The long-range (meter-scale) observation of coherent optical transition radiation indicates that the slice energy spread is below the percent level to preserve the modulations.

17.
Phys Rev Lett ; 109(6): 064802, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-23006273

RESUMEN

X-ray spectroscopy is used to obtain single-shot information on electron beam emittance in a low-energy-spread 0.5 GeV-class laser-plasma accelerator. Measurements of betatron radiation from 2 to 20 keV used a CCD and single-photon counting techniques. By matching x-ray spectra to betatron radiation models, the electron bunch radius inside the plasma is estimated to be ~0.1 µm. Combining this with simultaneous electron spectra, normalized transverse emittance is estimated to be as low as 0.1 mm mrad, consistent with three-dimensional particle-in-cell simulations. Correlations of the bunch radius with electron beam parameters are presented.

18.
Opt Express ; 19(27): 26634-44, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22274247

RESUMEN

Broad-bandwidth THz-domain electro-magnetic pulses are typically diagnosed through temporal electro-optic (EO) cross-correlation with an optical probe pulse. Single-shot time-domain measurements of the THz waveform involve complex setups at a bandwidth coverage limited by the probe bandwidth. Here we present an EO-based diagnostic directly in the spectral domain, relying on THz-induced optical sidebands on a narrow-bandwidth optical probe. Experiments are conducted with a 0.11-THz-bandwidth optical probe and a broadband source (0-8 THz detection bandwidth) rich in spectral features. The validity of the sideband diagnostic concept, its spectral resolution, sideband amplitude, and the effects of probe timing are studied. For probe pulses longer than the THz pulse, the sideband technique proves an accurate single-shot spectral diagnostic, with advantages in setup simplicity and bandwidth coverage no longer limited by the laser bandwidth.


Asunto(s)
Análisis de Falla de Equipo/instrumentación , Rayos Láser , Dispositivos Ópticos , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Diseño de Equipo , Radiación Terahertz
19.
Phys Rev Lett ; 106(13): 135002, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21517391

RESUMEN

Laser evolution and plasma wave excitation by a relativistically intense short-pulse laser in underdense plasma are investigated in the broad pulse limit, including the effects of pulse steepening, frequency redshifting, and energy depletion. The nonlinear plasma wave phase velocity is shown to be significantly lower than the laser group velocity and further decreases as the pulse propagates owing to laser evolution. This lowers the thresholds for trapping and wave breaking and reduces the energy gain and efficiency of laser-plasma accelerators that use a uniform plasma profile.

20.
Phys Rev Lett ; 107(14): 145002, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-22107202

RESUMEN

A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda