Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Commun ; 13(1): 1711, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361810

RESUMEN

Antarctic supraglacial lakes (SGLs) have been linked to ice shelf collapse and the subsequent acceleration of inland ice flow, but observations of SGLs remain relatively scarce and their interannual variability is largely unknown. This makes it difficult to assess whether some ice shelves are close to thresholds of stability under climate warming. Here, we present the first observations of SGLs across the entire East Antarctic Ice Sheet over multiple melt seasons (2014-2020). Interannual variability in SGL volume is >200% on some ice shelves, but patterns are highly asynchronous. More extensive, deeper SGLs correlate with higher summer (December-January-February) air temperatures, but comparisons with modelled melt and runoff are complex. However, we find that modelled January melt and the ratio of November firn air content to summer melt are important predictors of SGL volume on some potentially vulnerable ice shelves, suggesting large increases in SGLs should be expected under future atmospheric warming.


Asunto(s)
Cubierta de Hielo , Lagos , Regiones Antárticas , Clima , Temperatura
2.
Sci Rep ; 10(1): 1923, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32001806

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 13823, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554854

RESUMEN

Supraglacial lakes are important to ice sheet mass balance because their development and drainage has been linked to changes in ice flow velocity and ice shelf disintegration. However, little is known about their distribution on the world's largest ice sheet in East Antarctica. Here, we use ~5 million km2 of high-resolution satellite imagery to identify >65,000 lakes (>1,300 km2) that formed around the peak of the melt season in January 2017. Lakes occur in most marginal areas where they typically develop at low elevations (<100 m) and on low surface slopes (<1°), but they can exist 500 km inland and at elevations >1500 m. We find that lakes often cluster a few kilometres down-ice from grounding lines and ~60% (>80% by area) develop on ice shelves, including some potentially vulnerable to collapse driven by lake-induced hydro-fracturing. This suggests that parts of the ice sheet may be highly sensitive to climate warming.

4.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30984484

RESUMEN

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

5.
Nat Commun ; 8: 15962, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28654085

RESUMEN

It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda