Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hepatology ; 56(5): 1971-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22532075

RESUMEN

UNLABELLED: Acetaminophen (APAP) is a safe analgesic and antipyretic drug. However, APAP overdose leads to massive hepatocyte death. Cell death during APAP toxicity occurs by oncotic necrosis, in which the release of intracellular contents can elicit a reactive inflammatory response. We have previously demonstrated that an intravascular gradient of chemokines and mitochondria-derived formyl peptides collaborate to guide neutrophils to sites of liver necrosis by CXC chemokine receptor 2 (CXCR2) and formyl peptide receptor 1 (FPR1), respectively. Here, we investigated the role of CXCR2 chemokines and mitochondrial products during APAP-induced liver injury and in liver neutrophil influx and hepatotoxicity. During APAP overdose, neutrophils accumulated into the liver, and blockage of neutrophil infiltration by anti-granulocyte receptor 1 depletion or combined CXCR2-FPR1 antagonism significantly prevented hepatotoxicity. In agreement with our in vivo data, isolated human neutrophils were cytotoxic to HepG2 cells when cocultured, and the mechanism of neutrophil killing was dependent on direct contact with HepG2 cells and the CXCR2-FPR1-signaling pathway. Also, in mice and humans, serum levels of both mitochondrial DNA (mitDNA) and CXCR2 chemokines were higher during acute liver injury, suggesting that necrosis products may reach remote organs through the circulation, leading to a systemic inflammatory response. Accordingly, APAP-treated mice exhibited marked systemic inflammation and lung injury, which was prevented by CXCR2-FPR1 blockage and Toll-like receptor 9 (TLR9) absence (TLR9(-/-) mice). CONCLUSION: Chemokines and mitochondrial products (e.g., formyl peptides and mitDNA) collaborate in neutrophil-mediated injury and systemic inflammation during acute liver failure. Hepatocyte death is amplified by liver neutrophil infiltration, and the release of necrotic products into the circulation may trigger a systemic inflammatory response and remote lung injury.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Quimiocinas/metabolismo , ADN Mitocondrial/sangre , Fallo Hepático Agudo/inmunología , Hígado/patología , Neutrófilos/inmunología , Receptores de Formil Péptido/metabolismo , Acetaminofén , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/inmunología , Reacción de Fase Aguda/inmunología , Adolescente , Adulto , Análisis de Varianza , Animales , Movimiento Celular , Quimiocinas/sangre , Quimiocinas/inmunología , Niño , Técnicas de Cocultivo , Femenino , Células Hep G2 , Humanos , Interleucina-8/sangre , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Mitocondriales/inmunología , Proteínas Mitocondriales/metabolismo , Necrosis/inmunología , Receptores de Formil Péptido/inmunología , Receptores de Interleucina-8B/sangre , Receptores de Interleucina-8B/inmunología , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Adulto Joven
2.
Cell Commun Signal ; 11(1): 10, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23384127

RESUMEN

BACKGROUND: Adenosine triphosphate (ATP) is secreted from hepatocytes under physiological conditions and plays an important role in liver biology through the activation of P2 receptors. Conversely, higher extracellular ATP concentrations, as observed during necrosis, trigger inflammatory responses that contribute to the progression of liver injury. Impaired calcium (Ca2+) homeostasis is a hallmark of acetaminophen (APAP)-induced hepatotoxicity, and since ATP induces mobilization of the intracellular Ca2+ stocks, we evaluated if the release of ATP during APAP-induced necrosis could directly contribute to hepatocyte death. RESULTS: APAP overdose resulted in liver necrosis, massive neutrophil infiltration and large non-perfused areas, as well as remote lung inflammation. In the liver, these effects were significantly abrogated after ATP metabolism by apyrase or P2X receptors blockage, but none of the treatments prevented remote lung inflammation, suggesting a confined local contribution of purinergic signaling into liver environment. In vitro, APAP administration to primary mouse hepatocytes and also HepG2 cells caused cell death in a dose-dependent manner. Interestingly, exposure of HepG2 cells to APAP elicited significant release of ATP to the supernatant in levels that were high enough to promote direct cytotoxicity to healthy primary hepatocytes or HepG2 cells. In agreement to our in vivo results, apyrase treatment or blockage of P2 receptors reduced APAP cytotoxicity. Likewise, ATP exposure caused significant higher intracellular Ca2+ signal in APAP-treated primary hepatocytes, which was reproduced in HepG2 cells. Quantitative real time PCR showed that APAP-challenged HepG2 cells expressed higher levels of several purinergic receptors, which may explain the hypersensitivity to extracellular ATP. This phenotype was confirmed in humans analyzing liver biopsies from patients diagnosed with acute hepatic failure. CONCLUSION: We suggest that under pathological conditions, ATP may act not only an immune system activator, but also as a paracrine direct cytotoxic DAMP through the dysregulation of Ca2+ homeostasis.

3.
J Biochem Mol Toxicol ; 27(11): 479-85, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23868213

RESUMEN

Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Sesquiterpenos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Línea Celular , Fragmentación del ADN/efectos de los fármacos , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Humanos , Neoplasias/tratamiento farmacológico
4.
Sci Rep ; 13(1): 21637, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062077

RESUMEN

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Asunto(s)
FN-kappa B , Neumonía , Ratones , Animales , FN-kappa B/metabolismo , Factor de Activación Plaquetaria/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Aprotinina/metabolismo , Infiltración Neutrófila , Activación Transcripcional , Neumonía/inducido químicamente
5.
Pharmaceutics ; 14(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297660

RESUMEN

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

6.
PLoS One ; 16(7): e0250394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34237060

RESUMEN

Plant species from Annonaceae are commonly used in traditional medicine to treat various cancer types. This study aimed to investigate the antiproliferative potential of an alkaloid and acetogenin-rich fraction from the fruit peel of Annona crassiflora in HepG2 cells. A liquid-liquid fractionation was carried out on the ethanol extract of A. crassiflora fruit peel in order to obtain an alkaloid and acetogenin-rich fraction (AF-Ac). Cytotoxicity, proliferation and migration were evaluated in the HepG2 cells, as well as the proliferating cell nuclear antigen (PCNA), vinculin and epidermal growth factor receptor (EGFR) expression. In addition, intracellular Ca2+ was determined using Fluo4-AM and fluorescence microscopy. First, 9 aporphine alkaloids and 4 acetogenins that had not yet been identified in the fruit peel of A. crassiflora were found in AF-Ac. The treatment with 50 µg/mL AF-Ac reduced HepG2 cell viability, proliferation and migration (p < 0.001), which is in accordance with the reduced expression of PCNA and EGFR levels (p < 0.05). Furthermore, AF-Ac increased intracellular Ca2+ in the HepG2 cells, mobilizing intracellular calcium stores, which might be involved in the anti-migration and anti-proliferation capacities of AF-Ac. Our results support the growth-inhibitory potential of AF-Ac on HepG2 cells and suggest that this effect is triggered, at least in part, by PCNA and EGFR modulation and mobilization of intracellular Ca2+. This study showed biological activities not yet described for A. crassiflora fruit peel, which provide new possibilities for further in vivo studies to assess the antitumoral potential of A. crassiflora, especially its fruit peel.


Asunto(s)
Acetogeninas/análisis , Alcaloides/análisis , Annona/química , Frutas/química , Neoplasias Hepáticas/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos
7.
Ann Stomatol (Roma) ; 8(3): 95-103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29682221

RESUMEN

Mandible condyle remodeling is a great challenge on craniofacial growth studies. The great majority of the reports deals with growing period. However, there is a great necessity to clarify the importance of functional stimulation on adult mandible condyle remodeling. By using an adult mouse model, we investigated the influence of mandible forwarding on condyle remodeling and gene expression by bone forming cells. Tomographic and scintigraphic evaluations showed sagittal growth and cell activity enhancement. RT-PCR showed that Type I collagen, osteocalcin and osteonectin expression level can be altered. We showed that functional stimulation is necessary to maintain the regular gene expression by condyle bone forming cells in adult mice. It opens new frame for further investigations aiming new clinical approaches to temporomandibular joint problems treatment, as well as mandible retrusion treatment.

8.
Toxicol Res (Camb) ; 5(4): 1017-1028, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090409

RESUMEN

Bioengineered hybrids are emerging as a new class of nanomaterials consisting of a biopolymer and inorganic semiconductors used in biomedical and environmental applications. The aim of the present work was to determine the cytocompatibility of novel water-soluble Bi2S3 quantum dots (QDs) functionalized with chitosan and O-carboxymethyl chitosan (CMC) as capping ligands using an eco-friendly aqueous process at room temperature. These hybrid nanocomposites were tested for cytocompatibility using a 3-(4,5-dimethylthiazol-2yl) 2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay with cultured human osteosarcoma cells (SAOS), human embryonic kidney cells (HEK293T cells) and a LIVE/DEAD® viability-cytotoxicity assay. The results of the in vitro assays demonstrated that the CMC and chitosan-based nanohybrids were not cytotoxic and exhibited suitable cell viability responses. However, despite the "safe by design" approach used in this research, we have proved that the impact of the size, surface charge and biofunctionalization of the nanohybrids on cytotoxicity was cell type-dependent due to complex mechanisms. Thus, these novel bionanocomposites offer promising prospects for potential biomedical and pharmaceutical applications as fluorescent nanoprobes.

9.
Int J Nanomedicine ; 11: 4669-4690, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695325

RESUMEN

Herein, for the first time, we demonstrated that novel biofunctionalized semiconductor nanomaterials made of Cd-containing fluorescent quantum dot nanoconjugates with the surface capped by an aminopolysaccharide are not biologically safe for clinical applications. Conversely, the ZnS-based nanoconjugates proved to be noncytotoxic, considering all the parameters investigated. The results of in vitro cytotoxicity were remarkably dependent on the chemical composition of quantum dot (CdS or ZnS), the nature of the cell (human cancerous and embryonic types), and the concentration and time period of exposure to these nanomaterials, caused by the effects of Cd2+ on the complex nanotoxicity pathways involved in cellular uptake. Unexpectedly, no decisive evidence of nanotoxicity of CdS and ZnS conjugates was observed in vivo using intravenous injections in BALB/c mice for 30 days, with minor localized fluorescence detected in liver tissue specimens. Therefore, these results proved that CdS nanoconjugates could pose an excessive threat for clinical applications due to unpredicted and uncorrelated in vitro and in vivo responses caused by highly toxic cadmium ions at biointerfaces. On the contrary, ZnS nanoconjugates proved that the "safe by design" concept used in this research (ie, biocompatible core-shell nanostructures) could benefit a plethora of applications in nanomedicine and oncology.


Asunto(s)
Compuestos de Cadmio/química , Nanoconjugados/toxicidad , Nanomedicina , Neoplasias , Puntos Cuánticos/química , Sulfuros/química , Pruebas de Toxicidad , Compuestos de Zinc/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Masculino , Ratones , Nanoconjugados/química , Propiedades de Superficie
10.
Hum Immunol ; 63(8): 647-56, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12121672

RESUMEN

Schistosome antigenic components are being tested as vaccine candidates with various degrees of success, but there are only few reports using multivalent antigens to stimulate an appropriate immune response that leads to resistance or granuloma modulation. We investigated the in vitro response of peripheral blood mononuclear cells (PBMC) from chronic intestinal schistosomiasis individuals to PIII, a multivalent antigen prepared from Schistosoma mansoni adult worm antigen, and response to P24, a single antigen obtained from PIII. Treatment of PBMC with either PIII or P24 caused significant decrease in cellular proliferation and granuloma formation induced by S. mansoni antigens, and a significant elevation in IL-10 and TNF-alpha but not in IFN-gamma production. Moreover, P24 promoted an elevation in TNF-alpha level on the in vitro granuloma reaction, when cocultured with polyacrylamide beads (PB) coupled to S. mansoni antigens. These findings suggest that, besides inducing protective immunity, PIII and P24 antigens seem to be important in the regulation of in vitro granuloma formation through stimulation of IL-10 and TNF-alpha production in human schistosomiasis. The more pronounced effect of P24 on reducing the in vitro granulomatous reaction could be associated with a balance between IL-10 and TNF-alpha production.


Asunto(s)
Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Antígenos Helmínticos/administración & dosificación , Antígenos Helmínticos/aislamiento & purificación , Estudios de Casos y Controles , Femenino , Granuloma/etiología , Granuloma/inmunología , Humanos , Inmunidad Celular , Técnicas In Vitro , Interferón gamma/biosíntesis , Interleucina-10/biosíntesis , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Factor de Necrosis Tumoral alfa/biosíntesis
11.
Neuroreport ; 15(7): 1187-90, 2004 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-15129171

RESUMEN

We investigated the effect of the volatile anaesthetic halothane on [Ca2+]i of dorsal root ganglion neurons. Halothane was able to increase [Ca2+]i in those neurons in a dose-dependent manner and independent of extracellular calcium. However, halothane action was inhibited by BAPTA-AM, suggesting the involvement of intracellular calcium stores. Dantrolene, an inhibitor of ryanodine-sensitive calcium stores had no effect while 2-APB, an inhibitor of IP3-sensitive calcium store reduced by 78% the halothane-evoked increase on [Ca2+]i. These data suggests that halothane increased [Ca2+]i of ganglion neurons through calcium release from IP3-sensitive calcium store. One possible consequence of the halothane action is to alter presynaptic activity and signaling pathways that influence neurotransmission.


Asunto(s)
Calcio/metabolismo , Ganglios Espinales/efectos de los fármacos , Halotano/farmacología , Líquido Intracelular/metabolismo , Neuronas/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ganglios Espinales/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda