Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37988471

RESUMEN

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Asunto(s)
Trypanosoma brucei brucei , Estructuras R-Loop , Variación Antigénica/genética , Roturas del ADN , ADN , ARN , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
2.
Nucleic Acids Res ; 51(20): 11123-11141, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37843098

RESUMEN

RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function.


Asunto(s)
Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/metabolismo , Evasión Inmune/genética , ARN/genética , Antígenos de Superficie , Variación Antigénica/genética , ADN/genética , Mamíferos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
3.
J Cell Sci ; 134(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523684

RESUMEN

The voltage-dependent anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC protein, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes in the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Toxoplasma , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas , Toxoplasma/genética , Toxoplasma/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
4.
J Eukaryot Microbiol ; 70(6): e12994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37548427

RESUMEN

Selection and internalization of cargo via clathrin-mediated endocytosis requires adaptor protein complexes. One complex, AP-2, acts during cargo selection at the plasma membrane. African trypanosomes lack all components of the AP-2 complex, except for a recently identified orthologue of the AP-2-associated protein kinase 1, AAK1. In characterized eukaryotes, AAK1 phosphorylates the µ2 subunit of the AP-2 complex to enhance cargo recognition and uptake into clathrin-coated vesicles. Here, we show that kinetoplastids encode not one, but two AAK1 orthologues: one (AAK1L2) is absent from salivarian trypanosomes, while the other (AAK1L1) lacks important kinase-specific residues in a range of trypanosomes. These AAK1L1 and AAK1L2 novelties reinforce suggestions of functional divergence in endocytic uptake within salivarian trypanosomes. Despite this, we show that AAK1L1 null mutant Trypanosoma brucei, while viable, display slowed proliferation, morphological abnormalities including swelling of the flagellar pocket, and altered cargo uptake. In summary, our data suggest an unconventional role for a putative pseudokinase during endocytosis and/or vesicular trafficking in T. brucei, independent of AP-2.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Clatrina/metabolismo , Parásitos/metabolismo , Endocitosis/fisiología , Membrana Celular
5.
Mol Microbiol ; 116(2): 564-588, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932053

RESUMEN

Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.


Asunto(s)
Diminazeno/farmacología , Potencial de la Membrana Mitocondrial/fisiología , Tripanocidas/farmacología , Trypanosoma congolense/efectos de los fármacos , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Bovina/tratamiento farmacológico , Animales , Bovinos , Resistencia a Medicamentos/fisiología , Transportadores de Ácido Fólico/metabolismo , Fenantridinas/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tripanosomiasis Bovina/parasitología
6.
PLoS Pathog ; 16(5): e1008091, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463831

RESUMEN

Plasmodium species are apicomplexan parasites whose zoites are polarized cells with a marked apical organisation where the organelles associated with host cell invasion and colonization reside. Plasmodium gametes mate in the mosquito midgut to form the spherical and presumed apolar zygote that morphs during the following 24 hours into a polarized, elongated and motile zoite form, the ookinete. Endocytosis-mediated protein transport is generally necessary for the establishment and maintenance of polarity in epithelial cells and neurons, and the small GTPase RAB11A is an important regulator of protein transport via recycling endosomes. PbRAB11A is essential in blood stage asexual of Plasmodium. Therefore, a promoter swap strategy was employed to down-regulate PbRAB11A expression in gametocytes and zygotes of the rodent malaria parasite, Plasmodium berghei which demonstrated the essential role of RAB11A in ookinete development. The approach revealed that lack of PbRAB11A had no effect on gamete production and fertility rates however, the zygote to ookinete transition was almost totally inhibited and transmission through the mosquito was prevented. Lack of PbRAB11A did not prevent meiosis and mitosis, nor the establishment of polarity as indicated by the correct formation and positioning of the Inner Membrane Complex (IMC) and apical complex. However, morphological maturation was prevented and parasites remained spherical and immotile and furthermore, they were impaired in the secretion and distribution of microneme cargo. The data are consistent with the previously proposed model of RAB11A endosome mediated delivery of plasma membrane in Toxoplasma gondii if not its role in IMC formation and implicate it in microneme function.


Asunto(s)
Plasmodium berghei/metabolismo , Cigoto/crecimiento & desarrollo , Proteínas de Unión al GTP rab/metabolismo , Animales , Polaridad Celular/fisiología , Culicidae/parasitología , Malaria/parasitología , Morfogénesis , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Cigoto/metabolismo , Proteínas de Unión al GTP rab/fisiología
7.
PLoS Biol ; 17(6): e3000060, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31233488

RESUMEN

Apicomplexan parasites invade host cells in an active process involving their ability to move by gliding motility. While the acto-myosin system of the parasite plays a crucial role in the formation and release of attachment sites during this process, there are still open questions regarding the involvement of other mechanisms in parasite motility. In many eukaryotes, a secretory-endocytic cycle leads to the recycling of receptors (integrins), necessary to form attachment sites, regulation of surface area during motility, and generation of retrograde membrane flow. Here, we demonstrate that endocytosis operates during gliding motility in Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane flow, because inhibition of endocytosis blocks retrograde flow and motility. We demonstrate that extracellular parasites can efficiently incorporate exogenous material, such as labelled phospholipids, nanogold particles (NGPs), antibodies, and Concanavalin A (ConA). Using labelled phospholipids, we observed that the endocytic and secretory pathways of the parasite converge, and endocytosed lipids are subsequently secreted, demonstrating the operation of an endocytic-secretory cycle. Together our data consolidate previous findings, and we propose an additional model, working in parallel to the acto-myosin motor, that reconciles parasite motility with observations in other eukaryotes: an apicomplexan fountain-flow-model for parasite motility.


Asunto(s)
Movimiento Celular/fisiología , Endocitosis/fisiología , Toxoplasma/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Extensiones de la Superficie Celular/fisiología , Proteínas de la Membrana/metabolismo , Miosinas/metabolismo , Parásitos , Proteínas Protozoarias/metabolismo , Vías Secretoras/fisiología , Toxoplasma/fisiología
8.
Nucleic Acids Res ; 48(17): 9660-9680, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890403

RESUMEN

Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.


Asunto(s)
Variación Antigénica , ADN Polimerasa Dirigida por ADN/metabolismo , Telómero/genética , Trypanosoma brucei brucei/genética , Línea Celular , Núcleo Celular/enzimología , Núcleo Celular/genética , Segregación Cromosómica , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Regulación de la Expresión Génica , Genoma de Protozoos , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Telómero/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidad , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , ADN Polimerasa theta
9.
PLoS Pathog ; 15(4): e1007512, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947298

RESUMEN

The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.


Asunto(s)
Dinaminas/metabolismo , Fibroblastos/metabolismo , Dinámicas Mitocondriales , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Células Cultivadas , Dinaminas/genética , Fibroblastos/citología , Fibroblastos/parasitología , Humanos , Proteínas Protozoarias/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología
10.
J Anat ; 239(6): 1241-1255, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713444

RESUMEN

A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.


Asunto(s)
Sistema Nervioso Central , Vaina de Mielina , Citoplasma , Microscopía Electrónica , Oligodendroglía
11.
EMBO Rep ; 20(12): e48896, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31584242

RESUMEN

The obligate intracellular parasites Toxoplasma gondii and Plasmodium spp. invade host cells by injecting a protein complex into the membrane of the targeted cell that bridges the two cells through the assembly of a ring-like junction. This circular junction stretches while the parasites apply a traction force to pass through, a step that typically concurs with transient constriction of the parasite body. Here we analyse F-actin dynamics during host cell invasion. Super-resolution microscopy and real-time imaging highlighted an F-actin pool at the apex of pre-invading parasite, an F-actin ring at the junction area during invasion but also networks of perinuclear and posteriorly localised F-actin. Mutant parasites with dysfunctional acto-myosin showed significant decrease of junctional and perinuclear F-actin and are coincidently affected in nuclear passage through the junction. We propose that the F-actin machinery eases nuclear passage by stabilising the junction and pushing the nucleus through the constriction. Our analysis suggests that the junction opposes resistance to the passage of the parasite's nucleus and provides the first evidence for a dual contribution of actin-forces during host cell invasion by apicomplexan parasites.


Asunto(s)
Actinas/fisiología , Interacciones Huésped-Parásitos/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/fisiología , Toxoplasma/parasitología , Toxoplasma/patogenicidad , Actinas/genética , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/parasitología , Núcleo Celular/fisiología , Células Cultivadas , Técnicas de Inactivación de Genes , Humanos , Merozoítos/genética , Merozoítos/patogenicidad , Merozoítos/fisiología , Modelos Biológicos , Mutación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Transducción de Señal , Toxoplasma/genética , Virulencia/fisiología
12.
Nucleic Acids Res ; 47(17): 9180-9197, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350892

RESUMEN

Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.


Asunto(s)
Antígenos de Protozoos/genética , Inestabilidad Genómica/genética , Ribonucleasa H/genética , Iniciación de la Transcripción Genética , Animales , Antígenos de Protozoos/inmunología , ADN/química , ADN/genética , Daño del ADN/genética , Replicación del ADN/genética , Regulación de la Expresión Génica/genética , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN Polimerasa I/genética , ARN Polimerasa II/genética , Ribonucleasa H/química , Ribonucleasa H/inmunología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , Trypanosoma brucei brucei/patogenicidad
13.
PLoS Genet ; 14(12): e1007729, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30543624

RESUMEN

Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.


Asunto(s)
Evasión Inmune/genética , Ribonucleasa H/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Animales , Variación Antigénica , Daño del ADN , Genoma de Protozoos , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Ribonucleasa H/deficiencia , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/parasitología
14.
PLoS Pathog ; 13(7): e1006477, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742144

RESUMEN

All cells are subject to structural damage that must be addressed for continued growth. A wide range of damage affects the genome, meaning multiple pathways have evolved to repair or bypass the resulting DNA lesions. Though many repair pathways are conserved, their presence or function can reflect the life style of individual organisms. To identify genome maintenance pathways in a divergent eukaryote and important parasite, Trypanosoma brucei, we performed RNAi screens to identify genes important for survival following exposure to the alkylating agent methyl methanesulphonate. Amongst a cohort of broadly conserved and, therefore, early evolved repair pathways, we reveal multiple activities not so far examined functionally in T. brucei, including DNA polymerases, DNA helicases and chromatin factors. In addition, the screens reveal Trypanosoma- or kinetoplastid-specific repair-associated activities. We also provide focused analyses of repair-associated protein kinases and show that loss of at least nine, and potentially as many as 30 protein kinases, including a nuclear aurora kinase, sensitises T. brucei to alkylation damage. Our results demonstrate the potential for synthetic lethal genome-wide screening of gene function in T. brucei and provide an evolutionary perspective on the repair pathways that underpin effective responses to damage, with particular relevance for related kinetoplastid pathogens. By revealing that a large number of diverse T. brucei protein kinases act in the response to damage, we expand the range of eukaryotic signalling factors implicated in genome maintenance activities.


Asunto(s)
Reparación del ADN , Genoma de Protozoos , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Interferencia de ARN , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Daño del ADN/efectos de los fármacos , Evolución Molecular , Metilmetanosulfonato/análogos & derivados , Metilmetanosulfonato/toxicidad , Mutágenos/toxicidad , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos
15.
Nucleic Acids Res ; 45(14): 8378-8391, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637278

RESUMEN

Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)-biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.


Asunto(s)
Emparejamiento Base , ADN de Cinetoplasto/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/metabolismo , Animales , Sitios de Unión/genética , Cristalografía por Rayos X , ADN de Cinetoplasto/química , ADN de Cinetoplasto/metabolismo , Humanos , Ratones , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
16.
Molecules ; 24(2)2019 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642032

RESUMEN

Treatment of animal African trypanosomiasis (AAT) requires urgent need for safe, potent and affordable drugs and this has necessitated this study. We investigated the trypanocidal activities and mode of action of selected 3-aminosteroids against Trypanosoma brucei brucei. The in vitro activity of selected compounds of this series against T. congolense (Savannah-type, IL3000), T. b. brucei (bloodstream trypomastigote, Lister strain 427 wild-type (427WT)) and various multi-drug resistant cell lines was assessed using a resazurin-based cell viability assay. Studies on mode of antitrypanosomal activity of some selected 3-aminosteroids against Tbb 427WT were also carried out. The tested compounds mostly showed moderate-to-low in vitro activities and low selectivity to mammalian cells. Interestingly, a certain aminosteroid, holarrhetine (10, IC50 = 0.045 ± 0.03 µM), was 2 times more potent against T. congolense than the standard veterinary drug, diminazene aceturate, and 10 times more potent than the control trypanocide, pentamidine, and displayed an excellent in vitro selectivity index of 2130 over L6 myoblasts. All multi-drug resistant strains of T. b. brucei tested were not significantly cross-resistant with the purified compounds. The growth pattern of Tbb 427WT on long and limited exposure time revealed gradual but irrecoverable growth arrest at ≥ IC50 concentrations of 3-aminosteroids. Trypanocidal action was not associated with membrane permeabilization of trypanosome cells but instead with mitochondrial membrane depolarization, reduced adenosine triphosphate (ATP) levels and G2/M cell cycle arrest which appear to be the result of mitochondrial accumulation of the aminosteroids. These findings provided insights for further development of this new and promising class of trypanocide against African trypanosomes.


Asunto(s)
Colestanoles/farmacología , Resistencia a Medicamentos , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Colestanoles/química , Concentración 50 Inhibidora , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Tripanocidas/química , Tripanosomiasis Africana/tratamiento farmacológico
17.
PLoS Pathog ; 12(7): e1005734, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27427910

RESUMEN

Regulated protein secretion is required for malaria parasite life cycle progression and transmission between the mammalian host and mosquito vector. During transmission from the host to the vector, exocytosis of highly specialised secretory vesicles, such as osmiophilic bodies, is key to the dissolution of the red blood cell and parasitophorous vacuole membranes enabling gamete egress. The positioning of adhesins from the TRAP family, from micronemes to the sporozoite surface, is essential for gliding motility of the parasite and transmission from mosquito to mammalian host. Here we identify a conserved role for the putative pantothenate transporter PAT in Plasmodium berghei in vesicle fusion of two distinct classes of vesicles in gametocytes and sporozoites. PAT is a membrane component of osmiophilic bodies in gametocytes and micronemes in sporozoites. Despite normal formation and trafficking of osmiophilic bodies to the cell surface upon activation, PAT-deficient gametes fail to discharge their contents, remain intraerythrocytic and unavailable for fertilisation and further development in the mosquito. Sporozoites lacking PAT fail to secrete TRAP, are immotile and thus unable to infect the subsequent rodent host. Thus, P. berghei PAT appears to regulate exocytosis in two distinct populations of vesicles in two different life cycle forms rather than acting as pantothenic transporter during parasite transmission.


Asunto(s)
Anopheles/parasitología , Malaria/transmisión , Perilipinas/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Modelos Animales de Enfermedad , Exocitosis/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Insectos Vectores/parasitología , Ratones , Microscopía Electrónica , Vesículas Secretoras/metabolismo , Esporozoítos/metabolismo , Transfección
18.
Nucleic Acids Res ; 44(10): 4763-84, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26951375

RESUMEN

Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.


Asunto(s)
Replicación del ADN , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/genética , Ciclo Celular , Núcleo Celular/genética , Complejo de Reconocimiento del Origen/fisiología , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/metabolismo
19.
BMC Biol ; 15(1): 70, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28810863

RESUMEN

BACKGROUND: The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. RESULTS: Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. CONCLUSIONS: This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.


Asunto(s)
Actinas/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Actinas/metabolismo , Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
20.
J Biol Chem ; 291(18): 9492-500, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26940875

RESUMEN

The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His(99) and Cys(136)), and an Asp (Asp(134)) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.


Asunto(s)
Alelos , Proteasas de Cisteína , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Protozoarias , Trypanosoma brucei brucei , Animales , Dominio Catalítico , Proteasas de Cisteína/biosíntesis , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Ratones , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda