Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cell ; 175(3): 641-642, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340038

RESUMEN

Understanding protein kinase family members that lack key catalytic residues-or pseudokinases-is a major challenge in cell signaling. In this issue of Cell, Sreelatha et al. (2018) describe how one pseudokinase transfers adenosine monophosphate (AMP) rather than phosphate to protein substrates, revealing unexpected catalytic diversity for the kinase fold.


Asunto(s)
Proteínas Quinasas , Transducción de Señal , Adenosina Trifosfato , Proteolisis
2.
Cell ; 171(3): 683-695.e18, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988771

RESUMEN

Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.


Asunto(s)
Epigen/química , Epirregulina/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Cristalografía por Rayos X , Epigen/metabolismo , Epirregulina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Ligandos , Modelos Moleculares , Multimerización de Proteína
3.
Cell ; 164(6): 1172-1184, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967284

RESUMEN

Cell signaling is dominated by analyzing positive responses to stimuli. Signal activation is balanced by negative regulators that are generally considered to terminate signaling. Rather than exerting only negative effects, however, many such regulators play important roles in enhancing cell-signaling control. Considering responses downstream of selected cell-surface receptors, we discuss how receptor internalization affects signaling specificity and how rapid kinase/phosphatase and GTP/GDP cycles increase responsiveness and allow kinetic proofreading in receptor signaling. We highlight the blurring of distinctions between positive and negative signals, recasting signal termination as the response to a switch-like transition into a new cellular state.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Retroalimentación Fisiológica , Humanos , Fosforilación
4.
Nature ; 602(7897): 518-522, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140400

RESUMEN

The epidermal growth factor receptor (EGFR) is frequently mutated in human cancer1,2, and is an important therapeutic target. EGFR inhibitors have been successful in lung cancer, where mutations in the intracellular tyrosine kinase domain activate the receptor1, but not in glioblastoma multiforme (GBM)3, where mutations occur exclusively in the extracellular region. Here we show that common extracellular GBM mutations prevent EGFR from discriminating between its activating ligands4. Different growth factor ligands stabilize distinct EGFR dimer structures5 that signal with different kinetics to specify or bias outcome5,6. EGF itself induces strong symmetric dimers that signal transiently to promote proliferation. Epiregulin (EREG) induces much weaker asymmetric dimers that drive sustained signalling and differentiation5. GBM mutations reduce the ability of EGFR to distinguish EREG from EGF in cellular assays, and allow EGFR to form strong (EGF-like) dimers in response to EREG and other low-affinity ligands. Using X-ray crystallography, we further show that the R84K GBM mutation symmetrizes EREG-driven extracellular dimers so that they resemble dimers normally seen with EGF. By contrast, a second GBM mutation, A265V, remodels key dimerization contacts to strengthen asymmetric EREG-driven dimers. Our results argue for an important role of altered ligand discrimination by EGFR in GBM, with potential implications for therapeutic targeting.


Asunto(s)
Glioblastoma , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ligandos , Mutación
5.
Mol Cell ; 79(3): 390-405.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32619402

RESUMEN

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.


Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por Sustrato
6.
Nature ; 600(7887): 148-152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819665

RESUMEN

The proto-oncogene ALK encodes anaplastic lymphoma kinase, a receptor tyrosine kinase that is expressed primarily in the developing nervous system. After development, ALK activity is associated with learning and memory1 and controls energy expenditure, and inhibition of ALK can prevent diet-induced obesity2. Aberrant ALK signalling causes numerous cancers3. In particular, full-length ALK is an important driver in paediatric neuroblastoma4,5, in which it is either mutated6 or activated by ligand7. Here we report crystal structures of the extracellular glycine-rich domain (GRD) of ALK, which regulates receptor activity by binding to activating peptides8,9. Fusing the ALK GRD to its ligand enabled us to capture a dimeric receptor complex that reveals how ALK responds to its regulatory ligands. We show that repetitive glycines in the GRD form rigid helices that separate the major ligand-binding site from a distal polyglycine extension loop (PXL) that mediates ALK dimerization. The PXL of one receptor acts as a sensor for the complex by interacting with a ligand-bound second receptor. ALK activation can be abolished through PXL mutation or with PXL-targeting antibodies. Together, these results explain how ALK uses its atypical architecture for its regulation, and suggest new therapeutic opportunities for ALK-expressing cancers such as paediatric neuroblastoma.


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Quinasa de Linfoma Anaplásico/metabolismo , Ligandos , Quinasa de Linfoma Anaplásico/genética , Animales , Sitios de Unión , Cristalografía por Rayos X , Glicina/química , Glicina/metabolismo , Humanos , Lactante , Masculino , Ratones , Modelos Moleculares , Mutación , Células 3T3 NIH , Neuroblastoma , Dominios Proteicos , Multimerización de Proteína
7.
Trends Biochem Sci ; 47(10): 875-891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35585008

RESUMEN

Progress towards understanding catalytically 'dead' protein kinases - pseudokinases - in biology and disease has hastened over the past decade. An especially lively area for structural biology, pseudokinases appear to be strikingly similar to their kinase relatives, despite lacking key catalytic residues. Distinct active- and inactive-like conformation states, which are crucial for regulating bona fide protein kinases, are conserved in pseudokinases and appear to be essential for function. We discuss recent structural data on conformational transitions and nucleotide binding by pseudokinases, from which some common principles emerge. In both pseudokinases and bona fide kinases, a conformational toggle appears to control the ability to interact with signaling effectors. We also discuss how biasing this conformational toggle may provide opportunities to target pseudokinases pharmacologically in disease.


Asunto(s)
Proteínas Quinasas , Transducción de Señal , Conformación Molecular , Proteínas Quinasas/metabolismo
8.
Cell ; 141(7): 1117-34, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20602996

RESUMEN

Recent structural studies of receptor tyrosine kinases (RTKs) have revealed unexpected diversity in the mechanisms of their activation by growth factor ligands. Strategies for inducing dimerization by ligand binding are surprisingly diverse, as are mechanisms that couple this event to activation of the intracellular tyrosine kinase domains. As our understanding of these details becomes increasingly sophisticated, it provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases. Much remains to be learned, however, about the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Animales , Activación Enzimática , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores
9.
Cell ; 142(4): 568-79, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20723758

RESUMEN

Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the "high-affinity" and "low-affinity" classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Cristalografía por Rayos X , Dimerización , Humanos , Cinética , Modelos Moleculares
10.
Cell ; 143(6): 966-77, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145462

RESUMEN

Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to "coincidence detection," allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.


Asunto(s)
Fosfolípidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
11.
Nature ; 553(7689): 501-505, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342135

RESUMEN

Canonical fibroblast growth factors (FGFs) activate FGF receptors (FGFRs) through paracrine or autocrine mechanisms in a process that requires cooperation with heparan sulfate proteoglycans, which function as co-receptors for FGFR activation. By contrast, endocrine FGFs (FGF19, FGF21 and FGF23) are circulating hormones that regulate critical metabolic processes in a variety of tissues. FGF19 regulates bile acid synthesis and lipogenesis, whereas FGF21 stimulates insulin sensitivity, energy expenditure and weight loss. Endocrine FGFs signal through FGFRs in a manner that requires klothos, which are cell-surface proteins that possess tandem glycosidase domains. Here we describe the crystal structures of free and ligand-bound ß-klotho extracellular regions that reveal the molecular mechanism that underlies the specificity of FGF21 towards ß-klotho and demonstrate how the FGFR is activated in a klotho-dependent manner. ß-Klotho serves as a primary 'zip code'-like receptor that acts as a targeting signal for FGF21, and FGFR functions as a catalytic subunit that mediates intracellular signalling. Our structures also show how the sugar-cutting enzyme glycosidase has evolved to become a specific receptor for hormones that regulate metabolic processes, including the lowering of blood sugar levels. Finally, we describe an agonistic variant of FGF21 with enhanced biological activity and present structural insights into the potential development of therapeutic agents for diseases linked to endocrine FGFs.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Transducción de Señal , Sitios de Unión , Cristalografía por Rayos X , Espacio Extracelular/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Células HEK293 , Humanos , Proteínas Klotho , Ligandos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Especificidad por Sustrato
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674381

RESUMEN

Kinases play important roles in diverse cellular processes, including signaling, differentiation, proliferation, and metabolism. They are frequently mutated in cancer and are the targets of a large number of specific inhibitors. Surveys of cancer genome atlases reveal that kinase domains, which consist of 300 amino acids, can harbor numerous (150 to 200) single-point mutations across different patients in the same disease. This preponderance of mutations-some activating, some silent-in a known target protein make clinical decisions for enrolling patients in drug trials challenging since the relevance of the target and its drug sensitivity often depend on the mutational status in a given patient. We show through computational studies using molecular dynamics (MD) as well as enhanced sampling simulations that the experimentally determined activation status of a mutated kinase can be predicted effectively by identifying a hydrogen bonding fingerprint in the activation loop and the αC-helix regions, despite the fact that mutations in cancer patients occur throughout the kinase domain. In our study, we find that the predictive power of MD is superior to a purely data-driven machine learning model involving biochemical features that we implemented, even though MD utilized far fewer features (in fact, just one) in an unsupervised setting. Moreover, the MD results provide key insights into convergent mechanisms of activation, primarily involving differential stabilization of a hydrogen bond network that engages residues of the activation loop and αC-helix in the active-like conformation (in >70% of the mutations studied, regardless of the location of the mutation).


Asunto(s)
Quinasa de Linfoma Anaplásico/química , Aprendizaje Automático , Simulación de Dinámica Molecular , Mutación , Quinasa de Linfoma Anaplásico/deficiencia , Activación Enzimática/genética , Humanos , Conformación Proteica en Hélice alfa
13.
Biochem J ; 478(17): 3331-3349, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34435619

RESUMEN

Co-signaling receptors for the T cell receptor (TCR) are important therapeutic targets, with blockade of co-inhibitory receptors such as PD-1 now central in immuno-oncology. Advancing additional therapeutic immune modulation approaches requires understanding ligand regulation of other co-signaling receptors. One poorly understood potential therapeutic target is TIM-3 (T cell immunoglobulin and mucin domain containing-3). Which of TIM-3's several proposed regulatory ligands is/are relevant for signaling is unclear, and different studies have reported TIM-3 as a co-inhibitory or co-stimulatory receptor in T cells. Here, we show that TIM-3 promotes NF-κB signaling and IL-2 secretion following TCR stimulation in Jurkat cells, and that this activity is regulated by binding to phosphatidylserine (PS). TIM-3 signaling is stimulated by PS exposed constitutively in cultured Jurkat cells, and can be blocked by mutating the PS-binding site or by occluding this site with an antibody. We also find that TIM-3 signaling alters CD28 phosphorylation. Our findings clarify the importance of PS as a functional TIM-3 ligand, and may inform the future exploitation of TIM-3 as a therapeutic target.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Fosfatidilserinas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo , Anticuerpos/inmunología , Apoptosis/genética , Sitios de Unión , Antígenos CD28/metabolismo , Células HEK293 , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Interleucina-2/biosíntesis , Células Jurkat , Ligandos , Macrófagos/metabolismo , FN-kappa B/metabolismo , Fosforilación/genética , Transducción de Señal/inmunología , Transfección
14.
Sensors (Basel) ; 22(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458893

RESUMEN

The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.


Asunto(s)
Polvo , Medio Ambiente Extraterrestre , Atmósfera
15.
Biochem J ; 477(20): 4053-4070, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33043964

RESUMEN

The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.


Asunto(s)
Neuroblastoma/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Dominio Catalítico , Diferenciación Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Cinética , Mutación , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/genética , Células PC12 , Fosforilación , Dominios Proteicos , ARN Interferente Pequeño , Ratas , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptores de Factores de Crecimiento/genética , Receptores de Factores de Crecimiento/metabolismo , Proteínas Recombinantes , Transducción de Señal/efectos de los fármacos
16.
Nat Rev Mol Cell Biol ; 9(2): 99-111, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18216767

RESUMEN

Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.


Asunto(s)
Membrana Celular/metabolismo , Fosfolípidos/química , Animales , Anexinas/química , Calcio/metabolismo , Cristalización , Cristalografía por Rayos X/métodos , Humanos , Modelos Biológicos , Modelos Químicos , Ácidos Fosfatidicos/química , Fosfatidilserinas/química , Estructura Terciaria de Proteína , Proteoma , Proteómica/métodos
17.
Cell Mol Life Sci ; 76(14): 2663-2679, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30982079

RESUMEN

Methods to catalog and computationally assess the mutational landscape of proteins in human cancers are desirable. One approach is to adapt evolutionary or data-driven methods developed for predicting whether a single-nucleotide polymorphism (SNP) is deleterious to protein structure and function. In cases where understanding the mechanism of protein activation and regulation is desired, an alternative approach is to employ structure-based computational approaches to predict the effects of point mutations. Through a case study of mutations in kinase domains of three proteins, namely, the anaplastic lymphoma kinase (ALK) in pediatric neuroblastoma patients, serine/threonine-protein kinase B-Raf (BRAF) in melanoma patients, and erythroblastic oncogene B 2 (ErbB2 or HER2) in breast cancer patients, we compare the two approaches above. We find that the structure-based method is most appropriate for developing a binary classification of several different mutations, especially infrequently occurring ones, concerning the activation status of the given target protein. This approach is especially useful if the effects of mutations on the interactions of inhibitors with the target proteins are being sought. However, many patients will present with mutations spread across different target proteins, making structure-based models computationally demanding to implement and execute. In this situation, data-driven methods-including those based on machine learning techniques and evolutionary methods-are most appropriate for recognizing and illuminate mutational patterns. We show, however, that, in the present status of the field, the two methods have very different accuracies and confidence values, and hence, the optimal choice of their deployment is context-dependent.


Asunto(s)
Algoritmos , Biomarcadores de Tumor/genética , Biología Computacional , Simulación por Computador , Mutación , Neoplasias/genética , Neoplasias/patología , Humanos , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 114(17): 4382-4387, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396397

RESUMEN

Tie1 and Tie2, members of the tyrosine kinase family with immunoglobulin and EGF homology domains, are receptor tyrosine kinases found primarily in endothelial cells with key roles in development and maintenance of the vasculature and in angiogenesis. They are attractive targets for therapeutic intervention in tumor angiogenesis, inflammation, and sepsis. Tie2 is regulated directly by the multimeric angiopoietin (Ang) ligands, with Ang1 being its primary activator. Structural studies have shown how Angs bind to the Tie2 ligand-binding region, but do not explain Tie2 activation and suggest a passive role for the Tie2 extracellular region (ECR) in ligand-induced receptor dimerization. Here we show that the Tie2 ECR forms strong dimers even in the absence of bound ligand. Dimerization is mediated by membrane-proximal fibronectin type III (FNIII) domains that were omitted in previous structural studies. We describe a 2.5-Å resolution X-ray crystal structure of the membrane-proximal three Tie2 FNIII domains, Tie2(FNIIIa-c), revealing two possible dimerization modes that primarily involve the third FNIII domain, FNIIIc. Mutating these dimer interfaces implicates one of them (dimer 1) in soluble Tie2 (sTie2) dimerization in solution but suggests that both could play a role in Ang1-induced Tie2 activation, possibly modulated by Tie1. Through small-angle X-ray scattering studies of sTie2 dimers in solution and modeling based on crystal structures, we suggest that Ang1 binding may cross-link Tie2 dimers into higher-order oligomers, potentially explaining how Tie2 is differentially clustered following ligand engagement in different cellular contexts. Our results also firmly implicate FNIII domain-mediated interactions in Tie2 activation, identifying a potential Achilles' heel for therapeutic inhibition.


Asunto(s)
Receptor TIE-2/química , Animales , Membrana Celular , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Mutación , Células 3T3 NIH , Conformación Proteica , Dominios Proteicos , Receptor TIE-2/metabolismo , Difracción de Rayos X
19.
Nat Chem Biol ; 12(11): 923-930, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595329

RESUMEN

The heterodimeric receptor tyrosine kinase complex formed by HER2 and HER3 can act as an oncogenic driver and is also responsible for rescuing a large number of cancers from a diverse set of targeted therapies. Inhibitors of these proteins, particularly HER2, have dramatically improved patient outcomes in the clinic, but recent studies have demonstrated that stimulating the heterodimeric complex, either via growth factors or by increasing the concentrations of HER2 and HER3 at the membrane, significantly diminishes the activity of the inhibitors. To identify an inhibitor of the active HER2-HER3 oncogenic complex, we developed a panel of Ba/F3 cell lines suitable for ultra-high-throughput screening. Medicinal chemistry on the hit scaffold resulted in a previously uncharacterized inhibitor that acts through preferential inhibition of the active state of HER2 and, as a result, is able to overcome cellular mechanisms of resistance such as growth factors or mutations that stabilize the active form of HER2.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Animales , Sitios de Unión/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Estabilidad Proteica/efectos de los fármacos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
20.
Mol Cell ; 40(6): 877-92, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172654

RESUMEN

While the small GTPase Rac1 and its effectors are well-established mediators of mitogenic and motile signaling by tyrosine kinase receptors and have been implicated in breast tumorigenesis, little is known regarding the exchange factors (Rac-GEFs) that mediate ErbB receptor responses. Here, we identify the PIP(3)-Gßγ-dependent Rac-GEF P-Rex1 as an essential mediator of Rac1 activation, motility, cell growth, and tumorigenesis driven by ErbB receptors in breast cancer cells. Notably, activation of P-Rex1 in breast cancer cells requires the convergence of inputs from ErbB receptors and a Gßγ- and PI3Kγ-dependent pathway. Moreover, we identified the GPCR CXCR4 as a crucial mediator of P-Rex1/Rac1 activation in response to ErbB ligands. P-Rex1 is highly overexpressed in human breast cancers and their derived cell lines, particularly those with high ErbB2 and ER expression. In addition to the prognostic and therapeutic implications, our findings reveal an ErbB effector pathway that is crucial for breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Oncogénicas v-erbB/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda