Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Euro Surveill ; 28(42)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855904

RESUMEN

We report cases of mammalian infection with highly pathogenic avian influenza (HPAI) virus A(H5N1) clade 2.3.4.4b in Northern Ireland. Two common gulls (Larus canus) and two red fox kits (Vulpes vulpes), were found dead in close vicinity. Comparison of viral whole genome sequences obtained from the animals identified a novel mammalian adaptation, PB2-M535I. Analysis of genetic sequences from other recent mammalian infections shows that this mutation has arisen on at least five occasions in three European countries since April 2023.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Zorros , Subtipo H5N1 del Virus de la Influenza A/genética , Irlanda del Norte/epidemiología , Virus de la Influenza A/genética , Filogenia
2.
BMC Genomics ; 22(1): 14, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407093

RESUMEN

BACKGROUND: Bovine Respiratory Syncytial Virus (BRSV) is a cause of Bovine Respiratory Disease (BRD). DNA-based biomarkers contributing to BRD resistance are potentially present in non-protein-coding regulatory regions of the genome, which can be determined using ATAC-Seq. The objectives of this study were to: (i) identify regions of open chromatin in DNA extracted from bronchial lymph nodes (BLN) of healthy dairy calves experimentally challenged with BRSV and compare them with those from non-challenged healthy control calves, (ii) elucidate the chromatin regions that were differentially or uniquely open in the BRSV challenged relative to control calves, and (iii) compare the genes found in regions proximal to the differentially open regions to the genes previously found to be differentially expressed in the BLN in response to BRSV and to previously identified BRD susceptibility loci. This was achieved by challenging clinically healthy Holstein-Friesian calves (mean age 143 ± 14 days) with either BRSV inoculum (n = 12) or with sterile phosphate buffered saline (PBS) (n = 6) and preparing and sequencing ATAC-Seq libraries from fresh BLN tissues. RESULTS: Using Diffbind, 9,144 and 5,096 differentially accessible regions (P < 0.05, FDR < 0.05) were identified between BRSV challenged and control calves employing DeSeq2 and EdgeR, respectively. Additionally, 8,791 chromatin regions were found to be uniquely open in BRSV challenged calves. Seventy-six and 150 of the genes that were previously found to be differentially expressed using RNA-Seq, were located within 2 kb downstream of the differentially accessible regions, and of the regions uniquely open in BRSV challenged calves, respectively. Pathway analyses within ClusterProfiler indicated that these genes were involved in immune responses to infection and participated in the Th1 and Th2 pathways, pathogen recognition and the anti-viral response. There were 237 differentially accessible regions positioned within 40 previously identified BRD susceptibility loci. CONCLUSIONS: The identified open chromatin regions are likely to be involved in the regulatory response of gene transcription induced by infection with BRSV. Consequently, they may contain variants which impact resistance to BRD that could be used in breeding programmes to select healthier, more robust cattle.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Bovino , Animales , Bovinos , Enfermedades de los Bovinos/genética , Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Ganglios Linfáticos , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/veterinaria , Virus Sincitial Respiratorio Bovino/genética
3.
J Gen Virol ; 101(10): 1056-1068, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32723429

RESUMEN

Human respiratory syncytial virus (HRSV) is an important respiratory pathogen causing a spectrum of illness, from common cold-like symptoms, to bronchiolitis and pneumonia requiring hospitalization in infants, the immunocompromised and the elderly. HRSV exists as two antigenic subtypes, A and B, which typically cycle biannually in separate seasons. There are many unresolved questions in HRSV biology regarding the interactions and interplay of the two subtypes. Therefore, we generated a reverse genetics system for a subtype A HRSV from the 2011 season (A11) to complement our existing subtype B reverse genetics system. We obtained the sequence (HRSVA11) directly from an unpassaged clinical sample and generated the recombinant (r) HRSVA11. A version of the virus expressing enhanced green fluorescent protein (EGFP) from an additional transcription unit in the fifth (5) position of the genome, rHRSVA11EGFP(5), was also generated. rHRSVA11 and rHRSVA11EGFP(5) grew comparably in cell culture. To facilitate animal co-infection studies, we derivatized our subtype B clinical isolate using reverse genetics toexpress the red fluorescent protein (dTom)-expressing rHRSVB05dTom(5). These viruses were then used to study simultaneous in vivo co-infection of the respiratory tract. Following intranasal infection, both rHRSVA11EGFP(5) and rHRSVB05dTom(5) infected cotton rats targeting the same cell populations and demonstrating that co-infection occurs in vivo. The implications of this finding on viral evolution are important since it shows that inter-subtype cooperativity and/or competition is feasible in vivo during the natural course of the infection.


Asunto(s)
Coinfección/virología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/virología , Animales , Línea Celular , Femenino , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pulmón/virología , Mucosa Respiratoria/virología , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Genética Inversa , Sigmodontinae , Proteína Fluorescente Roja
4.
J Virol ; 89(5): 2849-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25540371

RESUMEN

UNLABELLED: Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistinguishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recombinant (r) subgroup B virus (rHRSV(B05)) was generated based on a consensus genome sequence obtained directly from an unpassaged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to generate rHRSV(B05)EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high numbers of EGFP(+) cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume, the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies. IMPORTANCE: Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type viruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in animal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary human cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Genotipo , Proteínas Fluorescentes Verdes/genética , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Sistema Respiratorio/virología , Sigmodontinae , Coloración y Etiquetado , Virulencia
5.
J Virol ; 89(4): 2192-200, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473055

RESUMEN

UNLABELLED: Although live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston-Zagreb (EZ), allowing recovery of recombinant (r)MV(EZ). Three recombinant viruses were generated that contained the open reading frame encoding enhanced green fluorescent protein (EGFP) within an additional transcriptional unit (ATU) at various positions within the genome. rMV(EZ)EGFP(1), rMV(EZ)EGFP(3), and rMV(EZ)EGFP(6) contained the ATU upstream of the N gene, following the P gene, and following the H gene, respectively. The viruses were compared in vitro by growth curves, which indicated that rMV(EZ)EGFP(1) was overattenuated. Intratracheal infection of cynomolgus macaques with these recombinant viruses revealed differences in immunogenicity. rMV(EZ)EGFP(1) and rMV(EZ)EGFP(6) did not induce satisfactory serum antibody responses, whereas both in vitro and in vivo rMV(EZ)EGFP(3) was functionally equivalent to the commercial MV(EZ)-containing vaccine. Intramuscular vaccination of macaques with rMV(EZ)EGFP(3) resulted in the identification of EGFP(+) cells in the muscle at days 3, 5, and 7 postvaccination. Phenotypic characterization of these cells demonstrated that muscle cells were not infected and that dendritic cells and macrophages were the predominant target cells of live-attenuated MV. IMPORTANCE: Even though MV strain Edmonston-Zagreb has long been used as a live-attenuated vaccine (LAV) to protect against measles, nothing is known about the primary cells in which the virus replicates in vivo. This is vital information given the push to move toward needle-free routes of vaccination, since vaccine virus replication is essential for vaccination efficacy. We have generated a number of recombinant MV strains expressing enhanced green fluorescent protein. The virus that best mimicked the nonrecombinant vaccine virus was formulated according to protocols for production of commercial vaccine virus batches, and was subsequently used to assess viral tropism in nonhuman primates. The virus primarily replicated in professional antigen-presenting cells, which may explain why this LAV is so immunogenic and efficacious.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Macrófagos/inmunología , Macrófagos/virología , Vacuna Antisarampión/inmunología , Virus del Sarampión/inmunología , Músculos/inmunología , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Macaca fascicularis , Masculino , Vacuna Antisarampión/administración & dosificación , Vacuna Antisarampión/genética , Coloración y Etiquetado , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
6.
J Virol ; 87(7): 4033-42, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365435

RESUMEN

Measles virus (MV), one of the most contagious viruses infecting humans, causes a systemic infection leading to fever, immune suppression, and a characteristic maculopapular rash. However, the specific mechanism or mechanisms responsible for the spread of MV into the respiratory epithelium in the late stages of the disease are unknown. Here we show the crucial role of PVRL4 in mediating the spread of MV from immune to epithelial cells by generating a PVRL4 "blind" recombinant wild-type MV and developing a novel in vitro coculture model of B cells with primary differentiated normal human bronchial epithelial cells. We utilized the macaque model of measles to analyze virus distribution in the respiratory tract prior to and at the peak of MV replication. Expression of PVRL4 was widespread in both the lower and upper respiratory tract (URT) of macaques, indicating MV transmission can be facilitated by more than only epithelial cells of the trachea. Analysis of tissues collected at early time points after experimental MV infection demonstrated the presence of MV-infected lymphoid and myeloid cells contacting respiratory tract epithelium in the absence of infected epithelial cells, suggesting that these immune cells seed the infection in vivo. Thereafter, lateral cell-to-cell spread of MV led to the formation of large foci of infected cells in the trachea and high levels of MV infection in the URT, particularly in the nasal cavity. These novel findings have important implications for our understanding of the high transmissibility of measles.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Virus del Sarampión/inmunología , Sarampión/inmunología , Sarampión/transmisión , Mucosa Respiratoria/virología , Animales , Linfocitos B/inmunología , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Técnicas In Vitro , Macaca mulatta , Mucosa Respiratoria/inmunología , Células Vero , Internalización del Virus , Replicación Viral/fisiología
7.
Virus Evol ; 10(1): veae017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476866

RESUMEN

Swine influenza A virus (swIAV) is one of the main viral pathogens responsible for respiratory disease in farmed pigs. While outbreaks are often epidemic in nature, increasing reports suggest that continuous, endemic infection of herds is now common. The move towards larger herd sizes and increased intensification in the commercial pig industry may promote endemic infection; however, the impact that intensification has on swIAV infection dynamics and evolution is unclear. We carried out a longitudinal surveillance study for over 18 months on two enzootically infected, intensive, indoor, and multi-site pig production flows. Frequent sampling of all production stages using individual and group sampling methods was performed, followed by virological and immunological testing and whole-genome sequencing. We identified weaned pigs between 4 and 12-weeks old as the main reservoir of swIAV in the production flows, with continuous, year-round infection. Despite the continuous nature of viral circulation, infection levels were not uniform, with increasing exposure at the herd level associated with reduced viral prevalence followed by subsequent rebound infection. A single virus subtype was maintained on each farm for the entire duration of the study. Viral evolution was characterised by long periods of stasis punctuated by periods of rapid change coinciding with increasing exposure within the herd. An accumulation of mutations in the surface glycoproteins consistent with antigenic drift was observed, in addition to amino acid substitutions in the internal gene products as well as reassortment exchange of internal gene segments from newly introduced strains. These data demonstrate that long-term, continuous infection of herds with a single subtype is possible and document the evolutionary mechanisms utilised to achieve this.

8.
Virus Evol ; 10(1): veae027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699215

RESUMEN

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

9.
J Gen Virol ; 94(Pt 9): 1933-1944, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23784446

RESUMEN

Measles virus (MV), a member of the family Paramyxoviridae, remains a major cause of morbidity and mortality in the developing world. MV is spread by aerosols but the mechanism(s) responsible for the high transmissibility of MV are largely unknown. We previously infected macaques with enhanced green fluorescent protein-expressing recombinant MV and euthanized them at a range of time points. In this study a comprehensive pathological analysis has been performed of tissues from the respiratory tract around the peak of virus replication. Isolation of virus from nose and throat swab samples showed that high levels of both cell-associated and cell-free virus were present in the upper respiratory tract. Analysis of tissue sections from lung and primary bronchus revealed localized infection of epithelial cells, concomitant infiltration of MV-infected immune cells into the epithelium and localized shedding of cells or cell debris into the lumen. While high numbers of MV-infected cells were present in the tongue, these were largely encapsulated by intact keratinocyte cell layers that likely limit virus transmission. In contrast, the integrity of tonsillar and adenoidal epithelia was disrupted with high numbers of MV-infected epithelial cells and infiltrating immune cells present throughout epithelial cell layers. Disruption was associated with large numbers of MV-infected cells or cell debris 'spilling' from epithelia into the respiratory tract. The coughing and sneezing response induced by disruption of the ciliated epithelium, leading to the expulsion of MV-infected cells, cell debris and cell-free virus, contributes to the highly infectious nature of MV.


Asunto(s)
Virus del Sarampión/patogenicidad , Sarampión/virología , Infecciones del Sistema Respiratorio/virología , Animales , Modelos Animales de Enfermedad , Tejido Linfoide/virología , Macaca , Sarampión/patología , Virus del Sarampión/aislamiento & purificación , Mucosa Respiratoria/virología , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/patología , Carga Viral
10.
PLoS Pathog ; 7(1): e1001263, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21304593

RESUMEN

Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n = 3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.


Asunto(s)
Células Dendríticas/virología , Leucocitos Mononucleares/virología , Macrófagos Alveolares/virología , Virus del Sarampión/patogenicidad , Tropismo Viral , Aerosoles , Animales , Movimiento Celular , Células Dendríticas/citología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Exposición por Inhalación , Leucocitos Mononucleares/citología , Pulmón , Ganglios Linfáticos/citología , Ganglios Linfáticos/virología , Macaca fascicularis , Macrófagos Alveolares/citología , Virus del Sarampión/genética , Alveolos Pulmonares/citología , Alveolos Pulmonares/virología , Recombinación Genética , Proteínas Virales de Fusión
11.
Virus Evol ; 9(2): vead039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547380

RESUMEN

Rotavirus group A (RVA) is the most important cause of acute diarrhoea and severe dehydration in young mammals. Infection in livestock is associated with significant mortality and economic losses and, together with wildlife reservoirs, acts as a potential source of zoonotic transmission. Therefore, molecular surveillance of circulating RVA strains in animal species is necessary to assess the risks posed to humans and their livestock. An RVA molecular epidemiological surveillance study on clinically diseased livestock species revealed high prevalence in cattle and pigs (31 per cent and 18 per cent, respectively) with significant phylogenetic diversity including a novel and divergent ovine artiodactyl DS-1-like constellation G10-P[15]-I2-R2-C2-M2-A11-N2-T6-E2-H3. An RVA gene reassortment occurred in an RVA asymptomatic pig and identified as a G5-P[13] strain, and a non-structural protein (NSP)2 gene had intergenomically reassorted with a human RVA strain (reverse zoonosis) and possessed a novel NSP4 enterotoxin E9 which may relate to the asymptomatic RVA infection. Analysis of a novel sheep G10-P[15] strain viral protein 4 gene imparts a putative homologous intergenic and interspecies recombination event, subsequently creating the new P[15] divergent lineage. While surveillance across a wider range of wildlife and exotic species identified generally negative or low prevalence, a novel RVA interspecies transmission in a non-indigenous pudu deer (zoo origin) with the constellation of G6-P[11]12-R2-C2-M2-A3-N2-T6-E2-H3 was detected at a viral load of 11.1 log10 copies/gram. The detection of novel emerging strains, interspecies reassortment, interspecies infection, and recombination of RVA circulating in animal livestock and wildlife reservoirs is of paramount importance to the RVA epidemiology and evolution for the One Health approach and post-human vaccine introduction era where highly virulent animal RVA genotypes have the potential to be zoonotically transmitted.

12.
Front Genet ; 14: 1092877, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873940

RESUMEN

Bovine herpesvirus 1 (BoHV-1), is associated with several clinical syndromes in cattle, among which bovine respiratory disease (BRD) is of particular significance. Despite the importance of the disease, there is a lack of information on the molecular response to infection via experimental challenge with BoHV-1. The objective of this study was to investigate the whole-blood transcriptome of dairy calves experimentally challenged with BoHV-1. A secondary objective was to compare the gene expression results between two separate BRD pathogens using data from a similar challenge study with BRSV. Holstein-Friesian calves (mean age (SD) = 149.2 (23.8) days; mean weight (SD) = 174.6 (21.3) kg) were either administered BoHV-1 inoculate (1 × 107/mL × 8.5 mL) (n = 12) or were mock challenged with sterile phosphate buffered saline (n = 6). Clinical signs were recorded daily from day (d) -1 to d 6 (post-challenge), and whole blood was collected in Tempus RNA tubes on d six post-challenge for RNA-sequencing. There were 488 differentially expressed (DE) genes (p < 0.05, False Discovery rate (FDR) < 0.10, fold change ≥2) between the two treatments. Enriched KEGG pathways (p < 0.05, FDR <0.05); included Influenza A, Cytokine-cytokine receptor interaction and NOD-like receptor signalling. Significant gene ontology terms (p < 0.05, FDR <0.05) included defence response to virus and inflammatory response. Genes that are highly DE in key pathways are potential therapeutic targets for the treatment of BoHV-1 infection. A comparison to data from a similar study with BRSV identified both similarities and differences in the immune response to differing BRD pathogens.

13.
Microbiol Spectr ; 11(4): e0477622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358418

RESUMEN

Since 2020, the United Kingdom and Europe have experienced annual epizootics of high-pathogenicity avian influenza virus (HPAIV). The first epizootic, during the autumn/winter of 2020-2021, involved six H5Nx subtypes, although H5N8 HPAIV dominated in the United Kingdom. While genetic assessments of the H5N8 HPAIVs within the United Kingdom demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes.  Following a small number of detections of H5N1 in wild birds over the summer of 2021, the autumn/winter of 2021-2022 saw another European H5 HPAIV epizootic that dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggest that the H5N1 viruses circulating in Europe during late 2020 continued to circulate in wild birds throughout 2021, with minimal adaptation, but then went on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the United Kingdom over two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk, and whether incidents of lateral spread can be defined over independent incursions of infections from wild birds. This provides key supporting data for mitigation activities. IMPORTANCE High-pathogenicity avian influenza virus (HPAIV) outbreaks devastate avian species across all sectors, having both economic and ecological impacts through mortalities in poultry and wild birds, respectively. These viruses can also represent a significant zoonotic risk. Since 2020, the United Kingdom has experienced two successive outbreaks of H5 HPAIV. While H5N8 HPAIV was predominant during the 2020-2021 outbreak, other H5 subtypes were also detected. The following year, there was a shift in the subtype dominance to H5N1 HPAIV, but multiple H5N1 genotypes were detected. Through the thorough utilization of whole-genome sequencing, it was possible to track and characterize the genetic evolution of these H5 HPAIVs in United Kingdom poultry and wild birds. This enabled us to assess the risk posed by these viruses at the poultry-wild bird and the avian-human interfaces and to investigate the potential lateral spread between infected premises, a key factor in understanding the threat to the commercial sector.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Animales Salvajes , Aves , Reino Unido/epidemiología , Aves de Corral , Variación Genética , Filogenia
14.
J Gen Virol ; 93(Pt 3): 565-576, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22170635

RESUMEN

The cytidine deaminase APOBEC3G (apolipoprotein B mRNA-editing enzyme-catalytic polypeptide 3G; A3G) exerts antiviral activity against retroviruses, hepatitis B virus, adeno-associated virus and transposable elements. We assessed whether the negative-strand RNA viruses measles, mumps and respiratory syncytial might be affected by A3G, and found that their infectivity was reduced by 1-2 logs (90-99 %) in A3G overexpressing Vero cells, and in T-cell lines expressing A3G at physiological levels. Viral RNA was co-precipitated with HA-tagged A3G and could be amplified by RT-PCR. Interestingly, A3G reduced viral transcription and protein expression in infected cells by 50-70 %, and caused an increased mutation frequency of 0.95 mutations per 1000 nt in comparison to the background level of 0.22/1000. The observed mutations were not specific for A3G [cytidine to uridine (C→U) or guanine to adenine (G→A) hypermutations], nor specific for ADAR (adenosine deaminase acting on RNA, A→G and U→C transitions, with preference for next neighbour-nucleotides U = A>C>G). In addition, A3G mutants with inactivated catalytic deaminase (H257R and E259Q) were inhibitory, indicating that the deaminase activity is not required for the observed antiviral activity. In combination, impaired transcription and increased mutation frequencies are sufficient to cause the observed reduction in viral infectivity and eliminate virus replication within a few passages in A3G-expressing cells.


Asunto(s)
Citidina Desaminasa/metabolismo , Virus del Sarampión/patogenicidad , Virus de la Parotiditis/patogenicidad , Virus Sincitiales Respiratorios/patogenicidad , Replicación Viral , Desaminasa APOBEC-3G , Animales , Antivirales/metabolismo , Línea Celular , Citidina Desaminasa/inmunología , Humanos , Virus del Sarampión/crecimiento & desarrollo , Virus del Sarampión/inmunología , Virus de la Parotiditis/crecimiento & desarrollo , Virus de la Parotiditis/inmunología , Mutación Puntual , ARN Viral/genética , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Virus Sincitiales Respiratorios/inmunología
15.
J Virol ; 85(14): 7059-69, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21543475

RESUMEN

Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence.


Asunto(s)
Atención , Sistema Nervioso Central/virología , Genes Virales , Virus de la Parotiditis/patogenicidad , Animales , Chlorocebus aethiops , Virus de la Parotiditis/genética , Virus de la Parotiditis/fisiología , Ratas , Ratas Endogámicas Lew , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero , Virulencia , Replicación Viral
16.
Viruses ; 14(9)2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36146668

RESUMEN

Bovine respiratory disease (BRD), which is the leading cause of morbidity and mortality in cattle, is caused by numerous known and unknown viruses and is responsible for the widespread use of broad-spectrum antibiotics despite the use of polymicrobial BRD vaccines. Viral metagenomics sequencing on the portable, inexpensive Oxford Nanopore Technologies MinION sequencer and sequence analysis with its associated user-friendly point-and-click Epi2ME cloud-based pathogen identification software has the potential for point-of-care/same-day/sample-to-result metagenomic sequence diagnostics of known and unknown BRD pathogens to inform a rapid response and vaccine design. We assessed this potential using in vitro viral cell cultures and nasal swabs taken from calves that were experimentally challenged with a single known BRD-associated DNA virus, namely, bovine herpes virus 1. Extensive optimisation of the standard Oxford Nanopore library preparation protocols, particularly a reduction in the PCR bias of library amplification, was required before BoHV-1 could be identified as the main virus in the in vitro cell cultures and nasal swab samples within approximately 7 h from sample to result. In addition, we observed incorrect assignment of the bovine sequence to bacterial and viral taxa due to the presence of poor-quality bacterial and viral genome assemblies in the RefSeq database used by the EpiME Fastq WIMP pathogen identification software.


Asunto(s)
Enfermedades de los Bovinos , Herpesvirus Bovino 1 , Nanoporos , Virus , Animales , Antibacterianos , Bovinos , Genómica , Herpesvirus Bovino 1/genética , Metagenómica/métodos , Virus/genética
17.
J Virol ; 84(9): 4714-24, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20181691

RESUMEN

The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.


Asunto(s)
Virus del Sarampión/fisiología , Tropismo Viral , Animales , Linfocitos B/virología , Antígeno CD11c/análisis , Células Dendríticas/química , Células Dendríticas/virología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/virología , Macaca fascicularis , Virus del Sarampión/genética , Sistema Respiratorio/virología , Coloración y Etiquetado/métodos , Linfocitos T/virología , Carga Viral , Viremia
18.
Viruses ; 13(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34960704

RESUMEN

White chick hatchery disease is an emerging disease of broiler chicks with which the virus, chicken astrovirus, has been associated. Adult birds typically show no obvious clinical signs of infection, although some broiler breeder flocks have experienced slight egg drops. Substantial decreases in hatching are experienced over a two-week period, with an increase in mid-to-late embryo deaths, chicks too weak to hatch and pale, runted chicks with high mortality. Chicken astrovirus is an enteric virus, and strains are typically transmitted horizontally within flocks via the faecal-oral route; however, dead-in-shell embryos and weak, pale hatchlings indicate vertical transmission of the strains associated with white chick hatchery disease. Hatch levels are typically restored after two weeks when seroconversion of the hens to chicken astrovirus has occurred. Currently, there are no commercial vaccines available for the virus; therefore, the only means of protection is by good levels of biosecurity. This review aims to outline the current understanding regarding white chick hatchery disease in broiler chick flocks suffering from severe early mortality and increased embryo death in countries worldwide.


Asunto(s)
Infecciones por Astroviridae/veterinaria , Avastrovirus , Pollos , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades de las Aves de Corral , Crianza de Animales Domésticos , Animales , Infecciones por Astroviridae/fisiopatología , Infecciones por Astroviridae/prevención & control , Infecciones por Astroviridae/virología , Avastrovirus/aislamiento & purificación , Enfermedades Transmisibles Emergentes/fisiopatología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/virología , Progresión de la Enfermedad , Enfermedades de las Aves de Corral/fisiopatología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
19.
Transbound Emerg Dis ; 68(4): 1979-1994, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32969579

RESUMEN

As global pig health diseases, porcine respiratory disease complex (PRDC) and porcine circovirus-associated disease (PCVAD) generate substantial economic losses despite pigs been vaccinated against the primary causative virus, highlighting the importance of understanding virome interactions and specifically co-factor infections. Established primary endemic pathogens for PRDC include porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSv) and swine influenza virus (SIV), and PCV2 aetiology in interaction with other co-infecting viruses can result in PCVAD. Porcine parvovirus (PPV) 1 is a well-characterized virus with an available vaccine preventing reproductive failure in sows. However, whilst novel PPV 2 to 7 viruses have been identified since 2001, their viral pathogenic potential in clinical and subclinical disease remains to be determined. Therefore, this study has sought to develop a better understanding of their potential role as associated co-infections in PRDC and PCVAD by examining archival samples for the presence of PCV2 and the novel parvoviruses PPV2-4 from clinically diseased pigs across production age stages. Epidemiologically, the novel PPV2 was found to be the most prevalent within the fattener age group with PPV2-4 statistically associated with pig respiratory disease and enteric ulcers. Additionally, statistical modelling by latent class analysis (LCA) on veterinary pathology scored pigs found a clustering co-factor association between PPV2 and PCV2, suggesting the novel PPV may be involved in PRDC and PCVAD. Phylogenetic analysis of novel PPVs revealed the PPV2 capsid evolution to be diverged from the original strains with a low nucleotide homology of 88%-96% between two distinct clades. These findings determine that novel PPV 2-4 viruses are statistically associated as co-infectors in a diseased pig population, and significantly detected PPV2 clustering co-infection frequency with PCV2 in PRDC and PCVAD diseased pigs through LCA analysis.


Asunto(s)
Infecciones por Circoviridae , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Enfermedades de los Porcinos , Animales , Infecciones por Circoviridae/complicaciones , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/veterinaria , Circovirus , Coinfección/veterinaria , Femenino , Parvovirus Porcino/genética , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Enfermedades de los Porcinos/epidemiología
20.
Front Genet ; 12: 633125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968129

RESUMEN

Bovine respiratory disease (BRD) causes substantial morbidity and mortality, affecting cattle of all ages. One of the main causes of BRD is an initial inflammatory response to bovine respiratory syncytial virus (BRSV). MicroRNAs are novel and emerging non-coding small RNAs that regulate many biological processes and are implicated in various inflammatory diseases. The objective of the present study was to elucidate the changes in the bovine bronchial lymph node miRNA transcriptome in response to BRSV following an experimental viral challenge. Holstein-Friesian calves were either administered a challenge dose of BRSV (103.5 TCID50/ml × 15 ml) (n = 12) or were mock inoculated with sterile phosphate buffered saline (n = 6). Daily scoring of clinical signs was performed and calves were euthanized at day 7 post-challenge. Bronchial lymph nodes were collected for subsequent RNA extraction and sequencing (75 bp). Read counts for known miRNAs were generated using the miRDeep2 package using the UMD3.1 reference genome and the bovine mature miRNA sequences from the miRBase database (release 22). EdgeR was used for differential expression analysis and Targetscan was used to identify target genes for the differentially expressed (DE) miRNAs. Target genes were examined for enriched pathways and gene ontologies using Ingenuity Pathway Analysis (Qiagen). Multi-dimensional scaling (MDS) based on miRNA gene expression changes, revealed a clearly defined separation between the BRSV challenged and control calves, although the clinical manifestation of disease was only mild. One hundred and nineteen DE miRNAs (P < 0.05, FDR < 0.1, fold change > 1.5) were detected between the BRSV challenged and control calves. The DE miRNAs were predicted to target 465 genes which were previously found to be DE in bronchial lymph node tissue, between these BRSV challenged and control calves. Of the DE predicted target genes, 455 had fold changes that were inverse to the corresponding DE miRNAs. There were eight enriched pathways among the DE predicted target genes with inverse fold changes to their corresponding DE miRNA including: granulocyte and agranulocyte adhesion and diapedesis, interferon signalling and role of pathogen recognition receptors in recognition of bacteria and viruses. Functions predicted to be increased included: T cell response, apoptosis of leukocytes, immune response of cells and stimulation of cells. Pathogen recognition and proliferation of cytotoxic T cells are vital for the recognition of the virus and its subsequent elimination.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda