Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circ Res ; 110(2): 211-9, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22095730

RESUMEN

RATIONALE: The mutation A341V in the S6 transmembrane segment of KCNQ1, the α-subunit of the slowly activating delayed-rectifier K(+) (I(Ks)) channel, predisposes to a severe long-QT1 syndrome with sympathetic-triggered ventricular tachyarrhythmias and sudden cardiac death. OBJECTIVE: Several genetic risk modifiers have been identified in A341V patients, but the molecular mechanisms underlying the pronounced repolarization phenotype, particularly during ß-adrenergic receptor stimulation, remain unclear. We aimed to elucidate these mechanisms and provide new insights into control of cAMP-dependent modulation of I(Ks). METHODS AND RESULTS: We characterized the effects of A341V on the I(Ks) macromolecular channel complex in transfected Chinese hamster ovary cells and found a dominant-negative suppression of cAMP-dependent Yotiao-mediated I(Ks) upregulation on top of a dominant-negative reduction in basal current. Phosphomimetic substitution of the N-terminal position S27 with aspartic acid rescued this loss of upregulation. Western blot analysis showed reduced phosphorylation of KCNQ1 at S27, even for heterozygous A341V, suggesting that phosphorylation defects in some (mutant) KCNQ1 subunits can completely suppress I(Ks) upregulation. Functional analyses of heterozygous KCNQ1 WT:G589D and heterozygous KCNQ1 WT:S27A, a phosphorylation-inert substitution, also showed such suppression. Immunoprecipitation of Yotiao with KCNQ1-A341V (in the presence of KCNE1) was not different from wild-type. CONCLUSIONS: Our results indicate the involvement of the KCNQ1-S6 region at/or around A341 in cAMP-dependent stimulation of I(Ks), a process that is under strong dominant-negative control, suggesting that tetrameric KCNQ1 phosphorylation is required. Specific long-QT1 mutations, including heterozygous A341V, disable this regulation.


Asunto(s)
AMP Cíclico/metabolismo , Genes Dominantes , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Agonistas Adrenérgicos beta/farmacología , Alanina , Animales , Ácido Aspártico , Western Blotting , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Perros , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Inmunoprecipitación , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/efectos de los fármacos , Fenotipo , Fosforilación , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Procesamiento Proteico-Postraduccional , Síndrome de Romano-Ward/fisiopatología , Factores de Tiempo , Transfección
2.
J Biol Chem ; 285(35): 27449-27456, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20566642

RESUMEN

Pathological forms of left ventricular hypertrophy (LVH) often progress to heart failure. Specific transcription factors have been identified that activate the gene program to induce pathological forms of LVH. It is likely that apart from activating transcriptional inducers of LVH, constitutive transcriptional repressors need to be removed during the development of cardiac hypertrophy. Here, we report that the constitutive presence of Krüppel-like factor 15 (KLF15) is lost in pathological hypertrophy and that this loss precedes progression toward heart failure. We show that transforming growth factor-beta-mediated activation of p38 MAPK is necessary and sufficient to decrease KLF15 expression. We further show that KLF15 robustly inhibits myocardin, a potent transcriptional activator. Loss of KLF15 during pathological LVH relieves the inhibitory effects on myocardin and stimulates the expression of serum response factor target genes, such as atrial natriuretic factor. This uncovers a novel mechanism where activated p38 MAPK decreases KLF15, an important constitutive transcriptional repressor whose removal seems a vital step to allow the induction of pathological LVH.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Factor Natriurético Atrial/metabolismo , Células COS , Chlorocebus aethiops , Activación Enzimática , Ratones , Ratas , Ratas Endogámicas Lew , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Circ Res ; 104(2): 170-8, 6p following 178, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19096030

RESUMEN

The myocardium of the failing heart undergoes a number of structural alterations, most notably hypertrophy of cardiac myocytes and an increase in extracellular matrix proteins, often seen as primary fibrosis. Connective tissue growth factor (CTGF) is a key molecule in the process of fibrosis and therefore seems an attractive therapeutic target. Regulation of CTGF expression at the promoter level has been studied extensively, but it is unknown how CTGF transcripts are regulated at the posttranscriptional level. Here we provide several lines of evidence to show that CTGF is importantly regulated by 2 major cardiac microRNAs (miRNAs), miR-133 and miR-30. First, the expression of both miRNAs was inversely related to the amount of CTGF in 2 rodent models of heart disease and in human pathological left ventricular hypertrophy. Second, in cultured cardiomyocytes and fibroblasts, knockdown of these miRNAs increased CTGF levels. Third, overexpression of miR-133 or miR-30c decreased CTGF levels, which was accompanied by decreased production of collagens. Fourth, we show that CTGF is a direct target of these miRNAs, because they directly interact with the 3' untranslated region of CTGF. Taken together, our results indicate that miR-133 and miR-30 importantly limit the production of CTGF. We also provide evidence that the decrease of these 2 miRNAs in pathological left ventricular hypertrophy allows CTGF levels to increase, which contributes to collagen synthesis. In conclusion, our results show that both miR-133 and miR-30 directly downregulate CTGF, a key profibrotic protein, and thereby establish an important role for these miRNAs in the control of structural changes in the extracellular matrix of the myocardium.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Procesamiento Postranscripcional del ARN , Remodelación Ventricular , Regiones no Traducidas 3' , Animales , Animales Recién Nacidos , Secuencia de Bases , Células Cultivadas , Biología Computacional , Factor de Crecimiento del Tejido Conjuntivo/genética , Modelos Animales de Enfermedad , Femenino , Fibrosis , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Miocardio/patología , Filogenia , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Renina/genética , Renina/metabolismo , Regulación hacia Arriba , Remodelación Ventricular/genética
4.
Cardiovasc Res ; 104(1): 216-25, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25139741

RESUMEN

AIMS: Mutations in KCNQ1, encoding for Kv7.1, the α-subunit of the IKs channel, cause long-QT syndrome type 1, potentially predisposing patients to ventricular tachyarrhythmias and sudden cardiac death, in particular, during elevated sympathetic tone. Here, we aim at characterizing the p.Lys557Glu (K557E) Kv7.1 mutation, identified in a Dutch kindred, at baseline and during (mimicked) increased adrenergic tone. METHODS AND RESULTS: K557E carriers had moderate QTc prolongation that augmented significantly during exercise. IKs characteristics were determined after co-expressing Kv7.1-wild-type (WT) and/or K557E with minK and Yotiao in Chinese hamster ovary cells. K557E caused IKs loss of function with slowing of the activation kinetics, acceleration of deactivation kinetics, and a rightward shift of voltage-dependent activation. Together, these contributed to a dominant-negative reduction in IKs density. Confocal microscopy and western blot indicated that trafficking of K557E channels was not impaired. Stimulation of WT IKs by 3'-5'-cyclic adenosine monophosphate (cAMP) generated strong current up-regulation that was preserved for K557E in both hetero- and homozygosis. Accumulation of IKs at fast rates occurred both in WT and in K557E, but was blunted in the latter. In a computational model, K557E showed a loss of action potential shortening during ß-adrenergic stimulation, in accordance with the lack of QT shortening during exercise in patients. CONCLUSION: K557E causes IKs loss of function with reduced fast rate-dependent current accumulation. cAMP-dependent stimulation of mutant IKs is preserved, but incapable of fully compensating for the baseline current reduction, explaining the long QT intervals at baseline and the abnormal QT accommodation during exercise in affected patients.


Asunto(s)
AMP Cíclico/metabolismo , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Mutación , Síndrome de Romano-Ward/genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción , Adolescente , Agonistas Adrenérgicos beta/farmacología , Adulto , Animales , Células CHO , Estudios de Casos y Controles , Simulación por Computador , Cricetulus , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perros , Electrocardiografía , Femenino , Predisposición Genética a la Enfermedad , Herencia , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Cinética , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Mutagénesis Sitio-Dirigida , Fenotipo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Síndrome de Romano-Ward/diagnóstico , Síndrome de Romano-Ward/metabolismo , Síndrome de Romano-Ward/fisiopatología , Sistemas de Mensajero Secundario , Transfección , Regulación hacia Arriba , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda