Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 34(50)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37708861

RESUMEN

Spin-transfer and spin-orbit torques allow controlling magnetic degrees of freedom in various materials and devices. However, while the transfer of angular momenta between electrons has been widely studied, the contribution of nuclear spins has yet to be explored further. This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins. Our starting point is a sizable nuclear spin in a metal with electronic spin accumulation. Then, via the hyperfine interactions, the nuclear spin modifies the an electronic spin density. The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components, respectively. Thisnuclearspin-orbittorqueis a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.

2.
Nanotechnology ; 31(35): 355002, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32396875

RESUMEN

The control of magnetic interactions is one of the most relevant topics in spintronics. In this work, we propose to use electric potential barriers for tuning or even suppressing the RKKY exchange coupling between magnetic impurities in a two-dimensional electron gas. Our results show that it is possible to manipulate both the magnitude and sign of the RKKY coupling. Systems with two and three impurities are studied. In the last case, the use of two potential barriers can be employed to decouple one of the impurities to the rest. The possibility to control the interactions between magnetic atoms individually may have applications in neuromorphic and quantum computing.

3.
Phys Rev Lett ; 120(2): 027201, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376711

RESUMEN

The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.

4.
J Phys Condens Matter ; 32(40): 404004, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498063

RESUMEN

The control of magnetic materials and devices by voltages without electric currents holds the promise of power-saving nano-scale devices. Here we study the temperature-dependent voltage control of the magnetic anisotropy caused by rare-earth (RE) local moments at an interface between a magnetic metal and a non-magnetic insulator, such as Co|(RE)|MgO. Based on a Stevens operator representation of crystal and applied field effects, we find large dominantly quadrupolar intrinsic and field-induced interface anisotropies at room temperature. We suggest improved functionalities of transition metal tunnel junctions by dusting their interfaces with rare earths.

5.
Phys Rev E ; 101(5-1): 052209, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575288

RESUMEN

Nonequilibrium systems exhibit particle-type solutions. Oscillons are one of the best-known localized states of systems with time-dependent forcing or parametrically driven systems. We investigate the transition from nonradiative to radiative oscillons in the parametrically driven sine-Gordon model in two spatial dimensions. The bifurcation takes place when the strength of the forcing (frequency) increases (decreases) above a certain threshold. As a result of this transition, the oscillon emits radially symmetric evanescent waves. Numerically, we provide the phase diagram and show the supercritical nature of this transition. For small oscillations, based on the amplitude equation approach, the sine-Gordon equation with time-dependent forcing is transformed into the parametrically driven damped nonlinear Schrödinger model in two spatial dimensions. This amplitude equation exhibits a transition between nonradiative to radiative localized structures, consistently. Both models show quite good agreement.

6.
Phys Rev E ; 99(3-1): 032210, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30999469

RESUMEN

The magnetization dynamics of nano-oscillators may be excited by both magnetic fields and spin-polarized currents. While the dynamics of single oscillators has been well characterized, the synchronization of several ones is not fully understood yet. An analytical and numerical study of the nonlinear dynamics of two magnetostatically coupled spin valves driven by spin-transfer torques is presented under the macrospin approximation. The oscillators interact via magnetostatic fields and exhibit a robust synchronized magnetization motion. We describe the magnetization dynamics of the system using the Landau-Lifshitz-Gilbert-Slonczewski equation. Using a modal decomposition technique, we describe the dynamics, synchronization, and competition of oscillatory modes as a function of the current density, and the geometrical parameters of the setup. Simulations of the Landau-Lifshitz-Gilbert-Slonczewski equation show good agreement with an approximate analytic solution.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26066109

RESUMEN

Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlying pattern. We describe a simple physical system, a magnetic wire forced with a transverse oscillatory magnetic field, which displays these traveling pulses.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25353546

RESUMEN

Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda