Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Nature ; 616(7955): 113-122, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922587

RESUMEN

Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.


Asunto(s)
Cromatina , Epigenoma , Mamíferos , Transcriptoma , Animales , Humanos , Ratones , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Histonas/química , Histonas/metabolismo , Análisis de la Célula Individual , Especificidad de Órganos , Encéfalo/embriología , Encéfalo/metabolismo , Envejecimiento/genética
2.
Nature ; 609(7926): 375-383, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35978191

RESUMEN

Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Encéfalo/metabolismo , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Epigenómica , Perfilación de la Expresión Génica , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Tonsila Palatina/citología , Tonsila Palatina/inmunología
3.
Nature ; 592(7853): 195-204, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33828315

RESUMEN

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Asunto(s)
Células/metabolismo , Edición Génica/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organización & administración , Animales , Terapia Genética , Objetivos , Humanos , Estados Unidos
4.
Proc Natl Acad Sci U S A ; 120(34): e2302910120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579143

RESUMEN

Gene editing in the brain has been challenging because of the restricted transport imposed by the blood-brain barrier (BBB). Current approaches mainly rely on local injection to bypass the BBB. However, such administration is highly invasive and not amenable to treating certain delicate regions of the brain. We demonstrate a safe and effective gene editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR/Cas9 machinery to the brain.


Asunto(s)
Encéfalo , Edición Génica , Encéfalo/diagnóstico por imagen , Barrera Hematoencefálica , Transporte Biológico , Microburbujas
5.
Nat Methods ; 19(9): 1064-1071, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36064773

RESUMEN

Engineered cardiac tissues derived from human induced pluripotent stem cells offer unique opportunities for patient-specific disease modeling, drug discovery and cardiac repair. Since the first engineered hearts were introduced over two decades ago, human induced pluripotent stem cell-based three-dimensional cardiac organoids and heart-on-a-chip systems have now become mainstays in basic cardiovascular research as valuable platforms for investigating fundamental human pathophysiology and development. However, major obstacles remain to be addressed before the field can truly advance toward commercial and clinical translation. Here we provide a snapshot of the state-of-the-art methods in cardiac tissue engineering, with a focus on in vitro models of the human heart. Looking ahead, we discuss major challenges and opportunities in the field and suggest strategies for enabling broad acceptance of engineered cardiac tissues as models of cardiac pathophysiology and testbeds for the development of therapies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ingeniería de Tejidos , Descubrimiento de Drogas , Corazón/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos , Organoides , Ingeniería de Tejidos/métodos
6.
Am J Hum Genet ; 108(5): 903-918, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33909993

RESUMEN

Macular degeneration (MD) is characterized by the progressive deterioration of the macula and represents one of the most prevalent causes of blindness worldwide. Abnormal intracellular accumulation of lipid droplets and pericellular deposits of lipid-rich material in the retinal pigment epithelium (RPE) called drusen are clinical hallmarks of different forms of MD including Doyne honeycomb retinal dystrophy (DHRD) and age-related MD (AMD). However, the appropriate molecular therapeutic target underlying these disorder phenotypes remains elusive. Here, we address this knowledge gap by comparing the proteomic profiles of induced pluripotent stem cell (iPSC)-derived RPEs (iRPE) from individuals with DHRD and their isogenic controls. Our analysis and follow-up studies elucidated the mechanism of lipid accumulation in DHRD iRPE cells. Specifically, we detected significant downregulation of carboxylesterase 1 (CES1), an enzyme that converts cholesteryl ester to free cholesterol, an indispensable process in cholesterol export. CES1 knockdown or overexpression of EFEMP1R345W, a variant of EGF-containing fibulin extracellular matrix protein 1 that is associated with DHRD and attenuated cholesterol efflux and led to lipid droplet accumulation. In iRPE cells, we also found that EFEMP1R345W has a hyper-inhibitory effect on epidermal growth factor receptor (EGFR) signaling when compared to EFEMP1WT and may suppress CES1 expression via the downregulation of transcription factor SP1. Taken together, these results highlight the homeostatic role of cholesterol efflux in iRPE cells and identify CES1 as a mediator of cholesterol efflux in MD.


Asunto(s)
Colesterol/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Adolescente , Adulto , Hidrolasas de Éster Carboxílico/genética , Diferenciación Celular/genética , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Degeneración Macular/patología , Persona de Mediana Edad , Drusas del Disco Óptico/congénito , Drusas del Disco Óptico/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/patología , Transducción de Señal , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada
7.
Nano Lett ; 23(3): 757-764, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648291

RESUMEN

Effective delivery of the CRISPR-Cas9 components is crucial to realizing the therapeutic potential. Although many delivery approaches have been developed for this application, oral delivery has not been explored due to the degradative nature of the gastrointestinal tract. For this issue, we developed a series of novel phenylboronic acid (PBA)-functionalized chitosan-polyethylenimine (CS-PEI) polymers for oral CRISPR delivery. PBA functionalization equipped the polyplex with higher stability, smooth transport across the mucus, and efficient endosomal escape and cytosolic unpackaging in the cells. From a library of 12 PBA-functionalized CS-PEI polyplexes, we identified a formulation that showed the most effective penetration in the intestinal mucosa after oral gavage to mice. The optimized formulation performed feasible CRISPR-mediated downregulation of the target protein and reduction in the downstream cholesterol. As the first oral CRISPR carrier, this study suggests the potential of addressing the needs of both local and systemic editing in a patient-compliant manner.


Asunto(s)
Ácidos Borónicos , Quitosano , Animales , Ratones , Polímeros , Técnicas de Transferencia de Gen
8.
Nucleic Acids Res ; 49(9): 5074-5083, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33905520

RESUMEN

Silver nanoclusters (AgNCs) have outstanding physicochemical characteristics, including the ability to interact with proteins and DNA. Given the growing number of diagnostic and therapeutic applications of AgNCs, we evaluated the impact of AgNCs on DNA replication and DNA damage response in cell-free extracts prepared from unfertilized Xenopus laevis eggs. We find that, among a number of silver nanomaterials, AgNCs uniquely inhibited genomic DNA replication and abrogated the DNA replication checkpoint in cell-free extracts. AgNCs did not affect nuclear membrane or nucleosome assembly. AgNCs-supplemented extracts showed a strong defect in the loading of the mini chromosome maintenance (MCM) protein complex, the helicase that unwinds DNA ahead of replication forks. FLAG-AgNCs immunoprecipitation and mass spectrometry analysis of AgNCs associated proteins demonstrated direct interaction between MCM and AgNCs. Our studies indicate that AgNCs directly prevent the loading of MCM, blocking pre-replication complex (pre-RC) assembly and subsequent DNA replication initiation. Collectively, our findings broaden the scope of silver nanomaterials experimental applications, establishing AgNCs as a novel tool to study chromosomal DNA replication.


Asunto(s)
Replicación del ADN , Nanoestructuras , Plata , Animales , Replicación del ADN/efectos de los fármacos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Nanoestructuras/química , Plata/farmacología , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 117(26): 15281-15292, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546520

RESUMEN

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


Asunto(s)
Leucina Encefalina-2-Alanina/farmacología , Inflamación/complicaciones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores Opioides delta/agonistas , Animales , Colon/inervación , Leucina Encefalina-2-Alanina/administración & dosificación , Células HEK293 , Humanos , Ratones , Nanopartículas/administración & dosificación , Neuronas , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
10.
Nano Lett ; 21(6): 2461-2469, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686851

RESUMEN

Circulating cell-free DNA (cfDNA) released by damaged cells causes inflammation and has been associated with the progression of sepsis. One proposed strategy to treat sepsis is to scavenge this inflammatory circulating cfDNA. Here, we develop a cfDNA-scavenging nanoparticle (NP) that consists of cationic polyethylenimine (PEI) of different molecular weight grafted to zeolitic imidazolate framework-8 (PEI-g-ZIF) in a simple one-pot process. PEI-g-ZIF NPs fabricated using PEI 1800 and PEI 25k but not PEI 600 suppressed cfDNA-induced TLR activation and subsequent nuclear factor kappa B pathway activity. PEI 1800-g-ZIF NPs showed greater inhibition of cfDNA-associated inflammation and multiple organ injury than naked PEI 1800 (lacking ZIF), and had greater therapeutic efficacy in treating sepsis. These results indicate that PEI-g-ZIF NPs acts as a "nanotrap" that improves upon naked PEI in scavenging circulating cfDNA, reducing inflammation, and reversing the progression of sepsis, thus providing a novel strategy for sepsis treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Estructuras Metalorgánicas , Nanopartículas , Sepsis , Humanos , Polietileneimina , Sepsis/tratamiento farmacológico
11.
Mater Today (Kidlington) ; 42: 99-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421329

RESUMEN

Advances in nanoformulation have driven progress in biomedicine by producing nanoscale tools for biosensing, imaging, and drug delivery. Flash-based technology, the combination of rapid mixing technique with the self-assembly of macromolecules, is a new engine for the translational nanomedicine. Here, we review the state-of-the-art in flash-based self-assembly including theoretical and experimental principles, mixing device design, and applications. We highlight the fields of flash nanocomplexation (FNC) and flash nanoprecipitation (FNP), with an emphasis on biomedical applications of FNC, and discuss challenges and future directions for flash-based nanoformulation in biomedicine.

12.
Proc Natl Acad Sci U S A ; 115(29): 7503-7508, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967135

RESUMEN

The surfaces of many hollow or tubular tissues/organs in our respiratory, gastrointestinal, and urogenital tracts are covered by mucosa with folded patterns. The patterns are induced by mechanical instability of the mucosa under compression due to constrained growth. Recapitulating this folding process in vitro will facilitate the understanding and engineering of mucosa in various tissues/organs. However, scant attention has been paid to address the challenge of reproducing mucosal folding. Here we mimic the mucosal folding process using a cell-laden hydrogel film attached to a prestretched tough-hydrogel substrate. The cell-laden hydrogel constitutes a human epithelial cell lining on stromal component to recapitulate the physiological feature of a mucosa. Relaxation of the prestretched tough-hydrogel substrate applies compressive strains on the cell-laden hydrogel film, which undergoes mechanical instability and evolves into morphological patterns. We predict the conditions for mucosal folding as well as the morphology of and strain in the folded artificial mucosa using a combination of theory and simulation. The work not only provides a simple method to fold artificial mucosa but also demonstrates a paradigm in tissue engineering via harnessing mechanical instabilities guided by quantitative mechanics models.


Asunto(s)
Células Epiteliales/metabolismo , Hidrogeles/química , Modelos Biológicos , Ingeniería de Tejidos , Línea Celular Tumoral , Células Epiteliales/citología , Humanos , Membrana Mucosa/citología , Membrana Mucosa/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(19): 4903-4908, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29686087

RESUMEN

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , Péptidos de Penetración Celular , Edición Génica/métodos , Técnicas de Transferencia de Gen , Nanopartículas/química , Plásmidos , Animales , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Células HEK293 , Células HeLa , Humanos , Células K562 , Ratones , Células 3T3 NIH , Plásmidos/química , Plásmidos/genética , Plásmidos/farmacología
14.
Adv Funct Mater ; 30(49)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34483808

RESUMEN

Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.

15.
Adv Funct Mater ; 30(44)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33390875

RESUMEN

The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.

16.
Small ; 16(46): e2004240, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107142

RESUMEN

Activation of the phagocytosis of macrophages to tumor cells is an attractive strategy for cancer immunotherapy, but the effectiveness is limited by the fact that many tumor cells express an increased level of anti-phagocytic signals (e.g., CD47 molecules) on their surface. To promote phagocytosis of macrophages, a pro-phagocytic nanoparticle (SNPACALR&aCD47 ) that concurrently carries CD47 antibody (aCD47) and a pro-phagocytic molecule calreticulin (CALR) is constructed to simultaneously modulate the phagocytic signals of macrophages. SNPACALR&aCD47 can achieve targeted delivery to tumor cells by specifically binding to the cell-surface CD47 and block the CD47-SIRPα pathway to inhibit the "don't eat me" signal. Tumor cell-targeted delivery increases the exposure of recombinant CALR on the cell surface and stimulates an "eat me" signal. Simultaneous modulation of the two signals enhances the phagocytosis of 4T1 tumor cells by macrophages, which leads to significantly improved anti-tumor efficacy in vivo. The findings demonstrate that the concurrent blockade of anti-phagocytic signals and activation of pro-phagocytic signals can be effective in macrophage-mediated cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Antígenos de Diferenciación , Humanos , Inmunoterapia , Macrófagos , Neoplasias/terapia , Fagocitosis , Receptores Inmunológicos
17.
Mol Pharm ; 17(3): 757-768, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32011888

RESUMEN

Salmon calcitonin (sCT) is a potent calcium-regulating peptide hormone and widely applied for the treatment of some bone diseases clinically. However, the therapeutic usefulness of sCT is hindered by the frequent injection required, owing to its short plasma half-life and therapeutic need for a high dose. Oral delivery is a popular modality of administration for patients because of its convenience to self-administration and high patient compliance, while orally administered sCT remains a great challenge currently due to the existence of multiple barriers in the gastrointestinal (GI) tract. Here, we introduced an orally targeted delivery system to increase the transport of sCT across the intestine through both the paracellular permeation route and the bile acid pathway. In this system, sCT-based glycol chitosan-taurocholic acid conjugate (GC-T)/dextran sulfate (DS) ternary nanocomplexes (NC-T) were produced by a flash nanocomplexation (FNC) process in a kinetically controlled mode. The optimized NC-T exhibited well-controlled properties with a uniform and sub-60 nm hydrodynamic diameter, high batch-to-batch reproducibility, good physical or chemical stability, as well as sustained drug release behaviors. The studies revealed that NC-T could effectively improve the intestinal uptake and permeability, owing to its surface functionalization with the taurocholic acid ligand. In the rat model, orally administered NC-T showed an obvious hypocalcemia effect and a relative oral bioavailability of 10.9%. An in vivo assay also demonstrated that NC-T induced no observable side effect after long-term oral administration. As a result, the orally targeted nanocomplex might be a promising candidate for improving the oral transport of therapeutic peptides.


Asunto(s)
Calcitonina/administración & dosificación , Hormonas y Agentes Reguladores de Calcio/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Absorción Intestinal/efectos de los fármacos , Nanocompuestos/química , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Células CACO-2/efectos de los fármacos , Células CACO-2/metabolismo , Calcitonina/efectos adversos , Calcitonina/sangre , Calcitonina/farmacocinética , Calcio/sangre , Hormonas y Agentes Reguladores de Calcio/efectos adversos , Hormonas y Agentes Reguladores de Calcio/sangre , Hormonas y Agentes Reguladores de Calcio/farmacocinética , Quitosano/química , Sulfato de Dextran/química , Liberación de Fármacos , Estabilidad de Medicamentos , Semivida , Humanos , Hipocalcemia/inducido químicamente , Inyecciones Subcutáneas , Masculino , Ratas , Ratas Sprague-Dawley , Ácido Taurocólico/química
18.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30773888

RESUMEN

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Células Madre Mesenquimatosas/química , Esferoides Celulares/trasplante , Ingeniería Celular/tendencias , Movimiento Celular/efectos de los fármacos , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patología , Humanos , Células Madre Mesenquimatosas/citología , Nanomedicina/tendencias , Esferoides Celulares/química , Tropismo Viral/efectos de los fármacos
19.
Biomacromolecules ; 20(1): 528-538, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30537806

RESUMEN

Oral drug delivery is a more favored mode of administration because of its ease of administration, high patient compliance, and low healthcare costs. However, no oral protein formulations are commercially available currently due to hostile gastrointestinal (GI) barriers resulting in insignificant oral bioavailability of macromolecular drugs. Herein, we used insulin as a model protein drug; insulin-loaded N-(2-hydroxy)-propyl-3-trimethylammonium chloride modified chitosan (HTCC)/sodium tripolyphosphate (TPP) nanocomplex (NC) as a nanocore was further encapsulated into enteric Eudragit L100-55 material, through a two-step flash nanocomplexation (FNC) process in a reliable and scalable manner, forming our NC-in-Eudragit composite particles (NE). Particle size and surface properties of our optimized NE were tailored to protect the loaded insulin from acidic degradation in the hostile stomach environment and to achieve intestinal site-specific drug release as well as the improvement of oral delivery efficiency of insulin. In addition, the oral administration of the optimized NE to type 1 diabetic rats could induce a very significant hypoglycemic effect with a relative oral bioavailability of 13.3%. Our results demonstrated that enteric encapsulation of nanotherapeutics using a FNC apparatus could cause drug formulations to possess better size controllability, batch-mode reproducibility, and homogeneous surface coating and then significantly enhance their oral bioavailability of insulin, indicating its great potential for clinical translation of oral protein therapeutics.


Asunto(s)
Absorción Gastrointestinal , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Nanocápsulas/química , Resinas Acrílicas/química , Administración Oral , Animales , Células CACO-2 , Quitosano/análogos & derivados , Células HT29 , Humanos , Hipoglucemiantes/farmacocinética , Insulina/farmacocinética , Masculino , Nanocápsulas/efectos adversos , Polifosfatos/química , Ratas , Ratas Sprague-Dawley
20.
Chem Rev ; 117(15): 9874-9906, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28640612

RESUMEN

Genome editing offers promising solutions to genetic disorders by editing DNA sequences or modulating gene expression. The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) technology can be used to edit single or multiple genes in a wide variety of cell types and organisms in vitro and in vivo. Herein, we review the rapidly developing CRISPR/Cas9-based technologies for disease modeling and gene correction and recent progress toward Cas9/guide RNA (gRNA) delivery based on viral and nonviral vectors. We discuss the relative merits of delivering the genome editing elements in the form of DNA, mRNA, or protein, and the opportunities of combining viral delivery of a transgene encoding Cas9 with nonviral delivery of gRNA. We highlight the lessons learned from nonviral gene delivery in the past three decades and consider their applicability for CRISPR/Cas9 delivery. We also include a discussion of bioinformatics tools for gRNA design and chemical modifications of gRNA. Finally, we consider the extracellular and intracellular barriers to nonviral CRISPR/Cas9 delivery and propose strategies that may overcome these barriers to realize the clinical potential of CRISPR/Cas9-based genome editing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Modelos Biológicos , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda