Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Faraday Discuss ; 253(0): 426-440, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39101858

RESUMEN

The correlation among chemical structure, mesoscale structure, and ion transport in 1,2,3-triazole-based polymerized ionic liquids (polyILs) featuring comparable polycation and polyanion backbones is investigated by wide-angle X-ray scattering (WAXS), differential scanning calorimetry, and broadband dielectric spectroscopy (BDS). Above the glass transition temperature, Tg, higher ionic conductivity is observed in polycation polyILs compared to their polyanion counterparts, and ion conduction is enhanced by increasing the counterion volume in both polycation or polyanion polyILs. Below Tg, polyanions show lower activation energy associated with ion conduction. However, the validity of the Barton-Nakajima-Namikawa relation indicates that hopping conduction is the dominant charge transport mechanism in all the polyILs studied. While a significant transition from a Vogel-Fulcher-Tammann to Arrhenius type of thermal activation is observed below Tg, the decoupling index, often used to quantify the extent to which segmental dynamics and ion conduction are correlated, remains unaltered for the polyILs studied, suggesting that this index may not be a general parameter to characterize charge transport in polymerized ionic liquids. Furthermore, detailed analyses of the WAXS results indicate that both the mobile ion type and the structure of the pendant groups control mesoscale organization. These findings are discussed within the framework of recent models, which account for the subtle interplay between electrostatic and elastic forces in determining ion transport in polyILs. The findings demonstrate the intricate balance between the chemical structure and interactions in polyILs that determine ion conduction in this class of polymer electrolytes.

2.
Macromol Rapid Commun ; 45(16): e2400205, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871351

RESUMEN

Effective recycling of mixed materials requires the separation of the different components without the need for toxic solvents. One approach involves utilizing a water-soluble coating with reversible photo-cross-linkers, making it robust until end of life where it can then be dissolved in water after de-cross-linking. Here, a novel coumarin methacrylate monomer and its nitroxide-mediated copolymerization to create poly((methacrylic acid)-co-(styrene sulfonate)-co-(coumarin methacrylate)) for water-soluble thin films are reported. Under exposure to light, the coumarin functional groups produce reversible [2+2] cycloadditions which cross-link the resulting polymer films, making them no longer water soluble. Characterization of reversible cross-linking behavior is reported through changes in contact angle and in situ rheological characterization. The resulting polymers are successfully integrated into metal-insulator-metal capacitors, demonstrating the potential use for water-soluble reversible photo-cross-linkable dielectric materials for organic electronics.


Asunto(s)
Polímeros , Solubilidad , Agua , Agua/química , Polímeros/química , Procesos Fotoquímicos , Reactivos de Enlaces Cruzados/química , Polimerizacion , Estructura Molecular , Metacrilatos/química , Cumarinas/química
3.
Small ; 19(12): e2206792, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36567424

RESUMEN

Thin-film microstructure, morphology, and polymorphism can be controlled and optimized to improve the performance of carbon-based electronics. Thermal or solvent vapor annealing are common post-deposition processing techniques; however, it can be difficult to control or destructive to the active layer or substrates. Here, the use of a static, strong magnetic field (SMF) as a non-destructive process for the improvement of phthalocyanine (Pc) thin-film microstructure, increasing organic thin-film transistor (OTFTs) mobility by twofold, is demonstrated. Grazing incident wide-angle X-ray scattering (GIWAXS), X-ray diffraction (XRD), and atomic force microscopy (AFM) elucidate the effect of SMF on both para- and diamagnetic Pc thin-films when subjected to a magnetic field. A SMF is found to increase the concentration of oxygen-induced radical species within the Pc thin-film, lending a paramagnetic character to ordinarily diamagnetic metal-free Pc and resulting in magnetic field induced changes to its thin-film microstructures. In a nitrogen environment, without competing degradation effects of molecular oxygen, SMF processing is found to favorably improve charge transport characteristics and increase OTFT mobility. Thus, post-deposition thin-film annealing with a magnetic field is presented as an alternative and promising technique for future thin-film engineering applications.

4.
J Am Chem Soc ; 144(36): 16456-16470, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044779

RESUMEN

Polymer self-assembly is a powerful approach for forming nanostructures for solution-phase applications. However, polymer semiconductor assembly has primarily been driven by solvent interactions. Here, we report poly(3-hexythiophene) homopolymer assembly driven and stabilized by oxidative doping with iron (III) p-toluenesulfonate in benzonitrile. By this improved method, dopant mol % and addition temperature determine the size and morphology of oxidized polymer nanostructures. The dopant counterion provides colloidal stability in a process of dopant-stabilized assembly (DSA). Each variable governing polymer assembly is systematically varied, revealing general principles of oxidized nanostructure assembly and allowing the polymer planarity, optical absorption, and doping level to be modulated. Oxidized nanostructure heights, lengths, and widths are shown to depend on these properties, which we hypothesize is due to competing nanostructure formation and oxidation mechanisms that are governed by the polymer conformation upon doping. Finally, we demonstrate that the nanoparticle oxidative doping level can be tuned post-formation through sequential dopant addition. By revealing the fundamental processes underlying DSA, this work provides a powerful toolkit to control the assembly and optoelectronic properties of oxidatively doped nanostructures in solution.


Asunto(s)
Nanoestructuras , Tiofenos , Nanoestructuras/química , Polímeros , Semiconductores , Tiofenos/química
5.
Langmuir ; 36(10): 2612-2621, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32093478

RESUMEN

The use of ternary additives in organic photovoltaics is a promising route for improving overall device performance. Silicon phthalocyanines (SiPcs) are ideal candidates due to their absorption profile, low cost, and ease of synthesis and chemical tunability. However, to date, only a few examples have been reported and specific strategies for aiding in the design of improved ternary additives have not been established. In this study, we report a relationship between ternary additive solubility and device performance, demonstrating that device performance is maximized when the SiPc additive solubility is similar to that of the donor polymer (P3HT, in this case). This improved performance can be attributed to the favored interfacial precipitation of the SiPc when its solubility matches that of the other components of the thin film. The power conversion efficiency (PCE) varied from 2.4% to 3.4% by using axially substituted SiPcs with different solubilities, where the best ternary additive led to a 25% increase in PCE compared to that of the baseline device.

6.
Langmuir ; 36(13): 3550-3557, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32163710

RESUMEN

The increased demand for electronic devices, combined with a desire to minimize the environmental impact, necessitates the development of new eco-friendly materials. One promising approach is the incorporation of renewable and green materials that possess the desired mechanical and electrical properties while allowing for more ecologically friendly disposal of these devices. The addition of low-weight percentages (0.25-0.75 wt %) of cellulose nanocrystals (CNCs) was investigated as an environmentally friendly additive in aqueous dispersions of poly(vinyl alcohol) (PVA). It was found that these low CNC loadings were sufficient to induce a favorable increase in viscosity, which in turn dramatically enhanced the film quality of the PVA blends through an improvement in the critical radius of the spun film, overall film thickness, and homogeneity of the thin film. This corresponded to an increase in the number of functioning organic electronic devices that could be fabricated by spin coating, including metal-insulator-metal (MIM) capacitors and organic thin-film transistors (OTFTs). Most importantly, the incorporation of CNCs into PVA did not significantly alter the native dielectric properties of the polymer thin films when incorporated into both MIM capacitors and OTFTs.

7.
Chem Rec ; 19(6): 1093-1112, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30672126

RESUMEN

Organic photovoltaics (OPVs) have experienced continued interest over the last 25 years as a viable technology for the generation of power. Phthalocyanines are among the oldest commercial dyes and have been utilized in some of the earliest examples of OPVs. In recent years, the use of boron subphthalocyanines (BsubPcs) and silicon phthalocyanines (SiPcs) has attracted a flurry of interest with some examples of fullerene-free devices reaching power conversion efficiencies >8 %. Unlike other more common divalent phthalocyanines such as copper or zinc, BsubPcs and SiPcs contain additional axial groups that can easily be functionalized without significantly affecting the optoelectronic properties of the macrocycle. This handle facilitates our ability to tune the solid-state arrangement and other physical characteristics such as solubility ultimately giving us the ability to improve the thin film processing and final device performance. This review covers recent studies on the development of BsubPcs and SiPcs for use as active materials in organic photovoltaics.

8.
Langmuir ; 32(51): 13640-13648, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27958753

RESUMEN

Cross-linking of hole-transporting polymer thin films in organic light emitting diodes (OLEDs) has been shown to increase device efficacy when subsequent layers are deposited from solution. This improvement, due to resistance of the films to dissolution, could also be achieved by covalently grafting the polymer film to the substrate. Using nitroxide-mediated polymerization (NMP), we synthesized a novel poly(9-(4-vinylbenzyl)-9H-carbazole) (poly(VBK)) copolymer which can be cross-linked and also developed two simple methods for the grafting-to or grafting-from, also known as surface-initiated polymerization, of poly(VBK) to indium tin oxide (ITO) substrates. All three of these methods produced thin films that could be orthogonally processed; that is, they resisted dissolution when the spin-coating of a subsequent layer was simulated. Similar electrochemical behavior for the poly(VBK) films was observed regardless of the technique used, suggesting that all three techniques could be used in the engineering of organic electronic devices. We expect that all three methods would be worth investigating in the solution-based assembly of OLEDs and other organic electronic devices.

9.
Chemphyschem ; 16(6): 1245-50, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25765007

RESUMEN

In this study, we consider the choice of a standard electron-donating material to be paired with boron subphthalocyanines (BsubPcs) to rapidly assess the viability of new BsubPc derivatives as electron-accepting materials within organic photovoltaic devices (OPVs). Specifically, we evaluate the effectiveness of solution-cast poly(3-hexylthiophene-2,5-diyl) (P3HT) as an electron donor paired with BsubPc derivatives relative to vacuum-deposited sexithiophene (α-6T). By using fullerene (C60 ), boron subphthalocyanine chloride (Cl-BsubPc), and hexachloro boron subphthalocyanine chloride (Cl-Cl6 BsubPc) as electron acceptors, we find that devices made with α-6T outperform those with P3HT. However, the two thiophene-based materials show the same performance trends. Given the preservation of these trends, we can recommend either option for assessing the potential of new BsubPc derivatives; P3HT as a solution-cast electron-donor layer or α-6T as a vacuum-deposited alternative.

10.
ACS Appl Mater Interfaces ; 16(35): 46600-46608, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39185575

RESUMEN

Introduction of amidine groups within the side chains of a conjugated polyfluorene was carried out using copper-catalyzed azide-alkyne cycloaddition. The resulting polymer was shown to form strong supramolecular interactions with the sidewalls of single-walled carbon nanotubes (SWNTs), forming polymer-nanotube complexes that exhibited solubility in various organic solvents. It was shown that the polymer-SWNT complexes were responsive to CO2, where the amidine groups formed amidinium bicarbonate salts upon CO2 exposure, causing the polymer-SWNT complexes to precipitate. This reaction could be reversed by bubbling N2 through the solution, which caused the polymer-SWNT complexes to redissolve. Incorporation of the polymer-SWNT complexes within thin-film transistor (TFT) devices as the active layer resulted in a CO2-responsive TFT sensor. It was found that the sensory device underwent a reversible shift in its threshold voltage from 5 to -1 V as well as a 1 order of magnitude decrease in its on-current upon exposure to CO2. This work shows that conjugated polymer-wrapped SWNTs having sensory elements within the polymer side chain can be used as the active layer within functional SWNT-based TFT sensors.

11.
Adv Sci (Weinh) ; 11(27): e2305515, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641886

RESUMEN

Cannabis producers, consumers, and regulators need fast, accurate, point-of-use sensors to detect Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from both liquid and vapor source samples, and phthalocyanine-based organic thin-film transistors (OTFTs) provide a cost-effective solution. Chloro aluminum phthalocyanine (Cl-AlPc) has emerged as a promising material due to its unique coordinating interactions with cannabinoids, allowing for superior sensitivity. This work explores the molecular engineering of AlPc to tune and enhance these interactions, where a series of novel phenxoylated R-AlPcs are synthesized and integrated into OTFTs, which are then exposed to THC and CBD solution and vapor samples. While the R-AlPc substituted molecules have a comparable baseline device performance to Cl-AlPc, their new crystal structures and weakened intermolecular interactions increase sensitivity to THC. Grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) are used to investigate this film restructuring, where a significant shift in the crystal structure, grain size, and film roughness is detected for the R-AlPc molecules that do not occur with Cl-AlPc. This significant crystal reorganization and film restructuring are the driving force behind the improved sensitivity to cannabinoids relative to Cl-AlPc and demonstrate that analyte-semiconductor interactions can be enhanced through chemical modification to create more responsive OTFT sensors.

12.
ACS Appl Mater Interfaces ; 16(36): 48016-48024, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213484

RESUMEN

Understanding charge transport in conjugated polymers is crucial for the development of next-generation organic electronic applications. It is presumed that structural disorder in conjugated polymers originating from their semicrystallinity, processing, or polymorphism leads to a complex energetic landscape that influences charge carrier transport properties. However, the link between polymer order parameters and energetic landscape is not well established experimentally. In this work, we successfully link statistical surveys of the local polymer electronic structure with paracrystalline structural disorder, a measure of statistical fluctuations away from the ideal polymer packing structure. We use scanning tunneling microscopy/spectroscopy to measure spatial variability in electronic band edges in PM6 films, a high-performance conjugated polymer, and find that films with higher paracrystallinity exhibit greater electronic disorder, as expected. In addition, we show that macroscopic charge carrier mobility in field effect transistors and and trap influence in hole-only diode devices is positively correlated with these microscopic structural and electronic parameters.

13.
Adv Mater ; 36(44): e2406105, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39149766

RESUMEN

Automation is vital to accelerating research. In recent years, the application of self-driving labs to materials discovery and device optimization has highlighted many benefits and challenges inherent to these new technologies. Successful automated workflows offer tangible benefits to fundamental science and industrial scale-up by significantly increasing productivity and reproducibility all while enabling entirely new types of experiments. However, it's implemtation is often time-consuming and cost-prohibitive and necessitates establishing multidisciplinary teams that bring together domain-specific knowledge with specific skillsets in computer science and engineering. This perspective article provides a comprehensive overview of how the research group has adopted "hybrid automation" over the last 8 years by using simple automatic electrical testers (autotesters) as a tool to increase productivity and enhance reproducibility in organic thin film transistor (OTFT) research. From wearable and stretchable electronics to next-generation sensors and displays, OTFTs have the potential to be a key technology that will enable new applications from health to aerospace. The combination of materials chemistry, device manufacturing, thin film characterization and electrical engineering makes OTFT research challenging due to the large parameter space created by both diverse material roles and device architectures. Consequently, this research stands to benefit enormously from automation. By leveraging the multidisciplinary team and taking a user-centered design approach in the design and continued improvement of the autotesters, the group has meaningfully increased productivity, explored research avenues impossible with traditional workflows, and developed as scientists and engineers capable of effectively designing and leveraging automation to build the future of their fields to encourage this approach, the files for replicating the infrastructure are included, and questions and potential collaborations are welcomed.

14.
Macromol Rapid Commun ; 34(7): 568-73, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23386322

RESUMEN

Boron subphthalocyanines (BsubPcs) are macrocyclic aromatic small molecules containing a chelated boron atom. BsubPcs have interesting optoelectronic and physical properties, justifying their use in various organic electronic devices such as organic solar cells and organic light-emitting diodes. However, our group has only recently reported the first incorporation of a BsubPc moiety into a polymer using a two-step post-polymerization procedure. This communication outlines the use of acrylic acid as a method for obtaining carboxylic acid functional copolymers for the facile coupling to BsubPc post polymerization. In addition, the observations and the proposed mechanism of a side product unique to the copolymerization of acrylic acid and styrene due to autoinitiation are presented.


Asunto(s)
Acrilatos/química , Boro/química , Polímeros/síntesis química , Estireno/química , Estructura Molecular , Polimerizacion , Polímeros/química
15.
ACS Appl Mater Interfaces ; 15(2): 3680-3688, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36603855

RESUMEN

Electronic waste is a growing challenge which needs to be addressed through the integration of high-performance sustainable materials. Green dielectric polymers such as poly(vinyl alcohol) (PVA) have favorable electrical properties but are challenging to integrate into thin film electronics due to their physical properties. For example, PVA suffers from poor film formation and is hygroscopic. Bilayer dielectrics with interfacial cross-linking can enable the use of high-performance PVA with favorable surface chemistry by using a hydrophobic poly(caprolactone) (PCL) layer. In this study, we developed a benzodioxinone-terminated PCL layer, which can be UV cross-linked to the hydroxy groups of the PVA dielectric. This air-stable UV-cross-linking PCL dielectric was able to effectively cross-link with PVA, leading to high-performance capacitors and single-walled carbon nanotube-based thin film transistors. This UV cross-linking PCL dielectric led to significant improvements in shelf-life, ease of processing, and similar device performance compared to our previously reported thermally cross-linking PCL layer. The UV cross-linking at the interface between these bilayers can allow for the integration of high-speed roll-to-roll processing, which enables low-cost, sustainable, and high-performance electronics.

16.
ACS Appl Mater Interfaces ; 15(47): 55109-55118, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37963182

RESUMEN

Poly(3-hexylthiophene) is one of the most prevalent and promising conjugated polymers for use in organic electronics. However, the deposition of this material in thin films is highly dependent on the process, such as blade coating versus spin coating and material properties such as molecular weight. Typically, large polymer dispersity makes it difficult to isolate the effect of molecular weight without considering a distribution. In this study, we characterize oligothiophenes of exactly 8, 11, and 14 repeat units, which were deposited into thin films by varying blade coating conditions and postdeposition annealing. From synchrotron-based grazing incidence wide-angle X-ray scattering (GIWAXS), scanning transmission X-ray microscopy (STXM) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), Raman microscopy, optical microscopy, and X-ray diffraction (XRD), it was suggested that higher molecular weight polymers exhibit a fast-forming crystalline polymorph (form-1) while low molecular weight polymers exhibit a slow forming polymorph (form-2) with large domain boundaries. As molecular weight is gradually increased, the polymorph formed transitions from form-1 and form-2, where 11 repeat unit oligomers display both polymorphs. We also found that processing conditions can increase the formation of the form-2 polymorph. We also report improved organic thin film transistor (OTFT) performance when form-1 is present. Overall, oligothiophene polymorph formation is highly dependent on the molecular weight and processing conditions, providing critical insight into the importance of polymer weight control in the development of thin-film electronics based on conjugated polymers.

17.
ACS Omega ; 8(1): 1588-1596, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643570

RESUMEN

We demonstrate large-area (1 cm2) organic photovoltaic (OPVs) devices based on bis(tri-n-butylsilyl oxide) silicon phthalocyanine (3BS)2-SiPc as a non-fullerene acceptor (NFA) with low synthetic complexity paired with poly(3-hexylthiophene) (P3HT) as a donor polymer. Environment-friendly nonhalogenated solvents were used to process large area OPVs on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. An alternate sequentially (Alt-Sq) blade-coated active layer with bulk heterojunction-like morphology is obtained when using (3BS)2-SiPc processing with o-xylene/1,3,5-trimethylbenzene solvents. The sequential (Sq) active layer is prepared by first blade-coating (3BS)2-SiPc solution followed by P3HT coated on the top without any post-treatment. The conventional sequentially (Sq) blade-coated active layer presents very low performance due to the (3BS)2-SiPc bottom layer being partially washed off by processing the top layer of P3HT. In contrast, alternate sequentially (Alt-Sq) blade-coated layer-by-layer film shows even better device performance compared to the bulk heterojunction (BHJ) active layer. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and atomic force microscopy (AFM) reveal that the Alt-Sq processing of the active layer leads to a BHJ-like morphology with a well-intermixed donor-acceptor component in the active layer while providing a simpler processing approach to low-cost and large-scale OPV production.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36897075

RESUMEN

Understanding the effect of surface chemistry on the dielectric-semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens-Wendt method and related to electron field-effect mobility of devices (µe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting µe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor-dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average µe of 7.2 × 10-2 cm2·V-1·s-1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average VT. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.

19.
ACS Appl Polym Mater ; 5(4): 2639-2653, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090422

RESUMEN

The proliferation of high-performance thin-film electronics depends on the development of highly conductive solid-state polymeric materials. We report on the synthesis and properties investigation of well-defined cationic and anionic poly(ionic liquid) AB-C type block copolymers, where the AB block was formed by random copolymerization of highly conductive anionic or cationic monomers with poly(ethylene glycol) methyl ether methacrylate, while the C block was obtained by post-polymerization of 2-phenylethyl methacrylate. The resulting ionic block copolymers were found to self-assemble into a lamellar morphology, exhibiting high ionic conductivity (up to 3.6 × 10-6 S cm-1 at 25 °C) and sufficient electrochemical stability (up to 3.4 V vs Ag+/Ag at 25 °C) as well as enhanced viscoelastic (mechanical) performance (storage modulus up to 3.8 × 105 Pa). The polymers were then tested as separators in two all-solid-state electrochemical devices: parallel plate metal-insulator-metal (MIM) capacitors and thin-film transistors (TFTs). The laboratory-scale truly solid-state MIM capacitors showed the start of electrical double-layer (EDL) formation at ∼103 Hz and high areal capacitance (up to 17.2 µF cm-2). For solid-state TFTs, low hysteresis was observed at 10 Hz due to the completion of EDL formation and the devices were found to have low threshold voltages of -0.3 and 1.1 V for p-type and n-type operations, respectively.

20.
Mol Imaging Biol ; 24(5): 675-691, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35257276

RESUMEN

By enabling the non-invasive monitoring and quantification of biomolecular processes, molecular imaging has dramatically improved our understanding of disease. In recent years, non-invasive access to the molecular drivers of health versus disease has emboldened the goal of precision health, which draws on concepts borrowed from process monitoring in engineering, wherein hundreds of sensors can be employed to develop a model which can be used to preventatively detect and diagnose problems. In translating this monitoring regime from inanimate machines to human beings, precision health posits that continual and on-the-spot monitoring are the next frontiers in molecular medicine. Early biomarker detection and clinical intervention improves individual outcomes and reduces the societal cost of treating chronic and late-stage diseases. However, in current clinical settings, methods of disease diagnoses and monitoring are typically intermittent, based on imprecise risk factors, or self-administered, making optimization of individual patient outcomes an ongoing challenge. Low-cost molecular monitoring devices capable of on-the-spot biomarker analysis at high frequencies, and even continuously, could alter this paradigm of therapy and disease prevention. When these devices are coupled with molecular imaging, they could work together to enable a complete picture of pathogenesis. To meet this need, an active area of research is the development of sensors capable of point-of-care diagnostic monitoring with an emphasis on clinical utility. However, a myriad of challenges must be met, foremost, an integration of the highly specialized molecular tools developed to understand and monitor the molecular causes of disease with clinically accessible techniques. Functioning on the principle of probe-analyte interactions yielding a transducible signal, probes enabling sensing and imaging significantly overlap in design considerations and targeting moieties, however differing in signal interpretation and readout. Integrating molecular sensors with molecular imaging can provide improved data on the personal biomarkers governing disease progression, furthering our understanding of pathogenesis, and providing a positive feedback loop toward identifying additional biomarkers and therapeutics. Coupling molecular imaging with molecular monitoring devices into the clinical paradigm is a key step toward achieving precision health.


Asunto(s)
Imagen Molecular , Humanos , Biomarcadores/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda