Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
FASEB J ; 34(6): 8082-8101, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32298026

RESUMEN

Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunidad Celular/inmunología , Péptidos/inmunología , Secuencia de Aminoácidos/fisiología , Aminoacil-ARNt Sintetasas/inmunología , Animales , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células TH1/inmunología
2.
Proc Natl Acad Sci U S A ; 114(25): 6498-6503, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584129

RESUMEN

Young researchers are crucially important for basic science as they make unexpected, fundamental discoveries. Since 1982, we find a steady drop in the number of grant-eligible basic-science faculty [principal investigators (PIs)] younger than 46. This fall occurred over a 32-y period when inflation-corrected congressional funds for NIH almost tripled. During this time, the PI success ratio (fraction of basic-science PIs who are R01 grantees) dropped for younger PIs (below 46) and increased for older PIs (above 55). This age-related bias seems to have caused the steady drop in the number of young basic-science PIs and could reduce future US discoveries in fundamental biomedical science. The NIH recognized this bias in its 2008 early-stage investigator (ESI) policy to fund young PIs at higher rates. We show this policy is working and recommend that it be enhanced by using better data. Together with the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators' Research Award (MIRA) program to reward senior PIs with research time in exchange for less funding, this may reverse a decades-long trend of more money going to older PIs. To prepare young scientists for increased demand, additional resources should be devoted to transitional postdoctoral fellowships already offered by NIH.


Asunto(s)
Investigación Biomédica/economía , Investigadores/economía , Adulto , Docentes , Organización de la Financiación/economía , Humanos , Persona de Mediana Edad , National Institutes of Health (U.S.)/economía , Estados Unidos
3.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28674032

RESUMEN

Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8+ gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8+ IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cardiomiopatía Chagásica/terapia , Inmunoterapia/métodos , Vacunas/inmunología , Adenoviridae/genética , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Cardiomiopatía Chagásica/prevención & control , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Portadores de Fármacos , Femenino , Vectores Genéticos , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Análisis de Supervivencia , Transducción Genética , Resultado del Tratamiento , Vacunas/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
4.
Cancer Immunol Immunother ; 66(10): 1345-1357, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28608115

RESUMEN

This phase I trial reports the safety and activity of BPX101, a second-generation antigen-targeted autologous antigen presenting cell (APC) vaccine in men with metastatic castration-resistant prostate cancer (mCRPC). To manufacture BPX101, APCs collected in a single leukapheresis were transduced with adenoviral vector Ad5f35 encoding inducible human (ih)-CD40, followed by incubation with protein PA001, which contains the extracellular domain of human prostate-specific membrane antigen. The ih-CD40 represents a modified chimeric version of the dendritic cell (DC) co-stimulatory molecule, CD40, which responds to a bioinert membrane-permeable activating dimerizer drug, rimiducid (AP1903), permitting temporally controlled, lymphoid-localized, DC-specific activation. Eighteen men with progressive mCRPC following ≤1 prior chemotherapy regimen were enrolled to evaluate three doses of BPX101 (4 × 106, 12.5 × 106 and 25 × 106 cells) administered intradermally every 2-4 weeks followed by rimiducid (0.4 mg/kg) intravenous (IV) infusion 24 h after each BPX101 dose. There were no dose-limiting toxicities. Immune upregulation as well as anti-tumor activity was observed with PSA declines, objective tumor regressions and robust efficacy of post-trial therapy. This novel antigen-targeted and in vivo activated immunotherapy platform may warrant further development as monotherapy and as a component of rational combinations.


Asunto(s)
Antígenos CD40/metabolismo , Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Neoplasias de la Próstata/inmunología , Anciano , Vacunas contra el Cáncer/uso terapéutico , Estudios de Cohortes , Humanos , Masculino
5.
J Urol ; 195(6): 1911-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26802582

RESUMEN

PURPOSE: We used targeted mass spectrometry to study the metabolic fingerprint of urothelial cancer and determine whether the biochemical pathway analysis gene signature would have a predictive value in independent cohorts of patients with bladder cancer. MATERIALS AND METHODS: Pathologically evaluated, bladder derived tissues, including benign adjacent tissue from 14 patients and bladder cancer from 46, were analyzed by liquid chromatography based targeted mass spectrometry. Differential metabolites associated with tumor samples in comparison to benign tissue were identified by adjusting the p values for multiple testing at a false discovery rate threshold of 15%. Enrichment of pathways and processes associated with the metabolic signature were determined using the GO (Gene Ontology) Database and MSigDB (Molecular Signature Database). Integration of metabolite alterations with transcriptome data from TCGA (The Cancer Genome Atlas) was done to identify the molecular signature of 30 metabolic genes. Available outcome data from TCGA portal were used to determine the association with survival. RESULTS: We identified 145 metabolites, of which analysis revealed 31 differential metabolites when comparing benign and tumor tissue samples. Using the KEGG (Kyoto Encyclopedia of Genes and Genomes) Database we identified a total of 174 genes that correlated with the altered metabolic pathways involved. By integrating these genes with the transcriptomic data from the corresponding TCGA data set we identified a metabolic signature consisting of 30 genes. The signature was significant in its prediction of survival in 95 patients with a low signature score vs 282 with a high signature score (p = 0.0458). CONCLUSIONS: Targeted mass spectrometry of bladder cancer is highly sensitive for detecting metabolic alterations. Applying transcriptome data allows for integration into larger data sets and identification of relevant metabolic pathways in bladder cancer progression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Transicionales/metabolismo , Metaboloma , Neoplasias de la Vejiga Urinaria/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/mortalidad , Estudios de Casos y Controles , Cromatografía Liquida , Humanos , Espectrometría de Masas , Metabolómica , Pronóstico , Transcriptoma , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad
6.
Proc Natl Acad Sci U S A ; 109(48): 19584-9, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23150544

RESUMEN

Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue.


Asunto(s)
Materiales Biocompatibles , Óptica y Fotónica , Prótesis e Implantes , Nanopartículas del Metal , Microscopía Electrónica de Rastreo
7.
Anticancer Drugs ; 25(8): 878-86, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24714082

RESUMEN

As loss of DNA-repair proteins is common in urothelial carcinoma (UC), a rationale can be made to evaluate the activity of poly (ADP-ribose) polymerase (PARP) inhibitors to exploit synthetic lethality. We aimed to preclinically evaluate a PARP inhibitor, CEP-9722, and its active metabolite, CEP-8983, in UC. The activity of CEP-8983 was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay against human UC cell lines. Flow cytometry, COMET assay, and western blot were performed to assess apoptosis, DNA damage, and DNA-repair proteins, respectively. RT4 xenografts received placebo or CEP-9722 (100 or 200 mg/kg/day) orally. Xenografts were subjected to immunohistochemistry for apoptosis [cleaved caspase (cc)-3] and angiogenesis (CD31). CEP-8983 (1 µmol/l) reduced the viability of RT4 and T24 cells by 20%, but did not reduce the viability of 5637 and TCC-SUP cells. Apoptosis and necrosis occurred in 9.7 and 9.1% of RT4 and 5637 cells, respectively. RT4 cells showed greater DNA damage compared with 5637 cells. Increased DNA damage occurred with combination versus CEP-8983 or cisplatin alone in RT4 and 5637 cells. T24 and RT4 showed the least RAD51 foci 8 h following radiation, whereas TCC-SUP and 5637 robustly induced RAD51 foci. CEP-9722 showed dose-dependent antitumor activity in RT4 xenografts; 200 mg/kg daily was better than control (P=0.04) and 100 mg/kg was not (P=0.26). Immunohistochemistry of xenografts showed a significant increase in cc-3 and decrease in CD31 with both doses (P<0.05). Biomarker-driven evaluation of PARP inhibitors in UC is justified as the activity of CEP-9722 correlated inversely with homologous recombination repair response to DNA damage.


Asunto(s)
Carbazoles/farmacología , Daño del ADN/efectos de los fármacos , Ftalimidas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Profármacos/farmacología , Reparación del ADN por Recombinación/efectos de los fármacos , Neoplasias Urológicas/patología , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Xenoinjertos , Humanos , Ratones Desnudos , Necrosis , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Neoplasias Urológicas/genética
8.
Proc Natl Acad Sci U S A ; 108(35): 14659-63, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21844334

RESUMEN

Slow rhythmic changes in nerve-cell activity are characteristic of unconscious brain states and also may contribute to waking brain function by coordinating activity between cortical and subcortical structures. Here we show that slow rhythms are exhibited by the koniocellular (K) pathway, one of three visual pathways beginning in the eye and projecting through the lateral geniculate visual relay nucleus to the cerebral cortex. We recorded activity in pairs and ensembles of neurons in the lateral geniculate nucleus of anesthetized marmoset monkeys. We found slow rhythms are common in K cells but are rare in parvocellular and magnocellular cell pairs. The time course of slow K rhythms corresponds to subbeta (<10 Hz) EEG frequencies, and high spike rates in K cells are associated with low power in the theta and delta EEG bands. By contrast, spontaneous activity in the parvocellular and magnocellular pathways is neither synchronized nor strongly linked to EEG state. These observations suggest that parallel visual pathways not only carry different kinds of visual signals but also contribute differentially to brain circuits at the first synapse in the thalamus. Differential contribution of sensory streams to rhythmic brain circuits also raises the possibility that sensory stimuli can be tailored to modify brain rhythms.


Asunto(s)
Electroencefalografía , Vías Visuales/fisiología , Animales , Callithrix , Cuerpos Geniculados/fisiología
9.
Nano Lett ; 13(12): 5832-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24195698

RESUMEN

The optical diffraction limit imposes a bound on imaging resolution in classical optics. Over the last twenty years, many theoretical schemes have been presented for overcoming the diffraction barrier in optical imaging using quantum properties of light. Here, we demonstrate a quantum superresolution imaging method taking advantage of nonclassical light naturally produced in fluorescence microscopy due to photon antibunching, a fundamentally quantum phenomenon inhibiting simultaneous emission of multiple photons. Using a photon counting digital camera, we detect antibunching-induced second and third order intensity correlations and perform subdiffraction limited quantum imaging in a standard wide-field fluorescence microscope.


Asunto(s)
Microscopía/métodos , Nanotecnología , Óptica y Fotónica , Luz , Fotones
10.
EMBO Rep ; 12(9): 971-9, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21799517

RESUMEN

The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl--known for its roles in regulating lymphocyte signalling--as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50.


Asunto(s)
Células Dendríticas/inmunología , Subunidad p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Animales , Antígenos Nucleares/biosíntesis , Antígenos Nucleares/metabolismo , Proteínas Cromosómicas no Histona/biosíntesis , Proteínas Cromosómicas no Histona/metabolismo , Células Dendríticas/metabolismo , Femenino , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Receptores Toll-Like/metabolismo
11.
J Immunol ; 186(7): 3934-45, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21357539

RESUMEN

Dendritic cells (DCs) initiate proinflammatory or regulatory T cell responses, depending on their activation state. Despite extensive knowledge of DC-activating signals, the understanding of DC inhibitory signals is relatively limited. We show that Src homology region 2 domain-containing phosphatase-1 (SHP-1) is an important inhibitor of DC signaling, targeting multiple activation pathways. Downstream of TLR4, SHP-1 showed increased interaction with several proteins including IL-1R-associated kinase-4, and modulated LPS signaling by inhibiting NF-κB, AP-1, ERK, and JNK activity, while enhancing p38 activity. In addition, SHP-1 inhibited prosurvival signaling through AKT activation. Furthermore, SHP-1 inhibited CCR7 protein expression. Inhibiting SHP-1 in DCs enhanced proinflammatory cytokines, IL-6, IL-12, and IL-1ß production, promoted survival, and increased DC migration to draining lymph nodes. Administration of SHP-1-inhibited DCs in vivo induced expansion of Ag-specific cytotoxic T cells and inhibited Foxp3(+) regulatory T cell induction, resulting in an enhanced immune response against pre-established mouse melanoma and prostate tumors. Taken together, these data demonstrate that SHP-1 is an intrinsic global regulator of DC function, controlling many facets of T cell-mediated immune responses.


Asunto(s)
Células Dendríticas/enzimología , Células Dendríticas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/fisiología , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Células Dendríticas/metabolismo , Células HEK293 , Humanos , Masculino , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional/inmunología
12.
Mol Ther ; 20(7): 1462-71, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22434138

RESUMEN

Recent modest successes in ex vivo dendritic cell (DC) immunotherapy have motivated continued innovation in the area of DC manipulation and activation. Although ex vivo vaccine approaches continue to be proving grounds for new DC manipulation techniques, the intrinsic limits of ex vivo therapy, including high cost, minimal standardization, cumbersome delivery, and poor accessibility, incentivizes the development of vaccines compatible with in vivo DC targeting. We describe here a method to co-deliver both tumor-specific antigen (TSA) and an iMyD88/CD40 adjuvant (iMC), to DCs that combines toll-like receptor (TLR) and CD40 signaling. In this study, we demonstrate that simple TSA delivery via adenoviral vectors results in strong antitumor immunity. Addition of iMC delivered in a separate vector is insufficient to enhance this effect. However, when delivered simultaneously with TSA in a single bicistronic vector (BV), iMC is able to significantly enhance antigen-specific cytotoxic T-cell (CTL) responses and inhibit established tumor growth. This study demonstrates the spatial-temporal importance of concurrent DC activation and TSA presentation. Further, it demonstrates the feasibility of in vivo molecular enhancement of DCs necessary for effective antitumor immune responses.


Asunto(s)
Antígenos de Neoplasias/inmunología , Antígenos CD40/inmunología , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Melanoma Experimental/terapia , Factor 88 de Diferenciación Mieloide/inmunología , Linfocitos T Citotóxicos/inmunología , Adyuvantes Inmunológicos , Animales , Antígenos de Neoplasias/biosíntesis , Antígenos de Neoplasias/genética , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/metabolismo , Dependovirus , Femenino , Inmunoterapia , Interleucina-12/metabolismo , Activación de Linfocitos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/biosíntesis
13.
Dev Neurosci ; 34(6): 463-76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23406908

RESUMEN

Research suggests that the medial dorsal nucleus (MD) of the thalamus influences pyramidal cell development in the prefrontal cortex (PFC) in an activity-dependent manner. The MD is reciprocally connected to the PFC. Many psychiatric disorders, such as schizophrenia, affect the PFC, and one of the most consistent findings in schizophrenia is a decrease in volume and neuronal number in the MD. Therefore, understanding the role the MD plays in the development of the PFC is important and may help in understanding the progression of psychiatric disorders that have their root in development. Focusing on the interplay between the MD and the PFC, this study examined the hypothesis that the MD plays a role in the dendritic development of pyramidal cells in the PFC. Unilateral electrolytic lesions of the MD in Long-Evans rat pups were made on postnatal day 4 (P4), and the animals developed to P60. We then examined dendritic morphology by examining MAP2 immunostaining and by using Golgi techniques to determine basilar dendrite number and spine density. Additionally, we examined pyramidal cell density in cingulate area 1 (Cg1), prelimbic region, and dorsolateral anterior cortex, which receive afferents from the MD. Thalamic lesions caused a mean MD volume decrease of 12.4% which led to a significant decrease in MAP2 staining in both superficial and deep layers in all 3 cortical areas. The lesions also caused a significant decrease in spine density and in the number of primary and secondary basilar dendrites on superficial and deep layer pyramidal neurons in all 3 regions. No significant difference was observed in pyramidal cell density in any of the regions or layers, but a nonsignificant increase in cell density was observed in 2 regions. Our data are thus consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good model to begin to examine neurodevelopmental disorders such as autism and schizophrenia.


Asunto(s)
Núcleo Talámico Mediodorsal/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Dendritas , Espinas Dendríticas , Núcleo Talámico Mediodorsal/lesiones , Células Piramidales , Ratas , Ratas Long-Evans
14.
J Comp Neurol ; 530(5): 804-816, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34611910

RESUMEN

Corticocortical connections link visual cortical areas in both the ipsilateral and contralateral hemispheres. We studied the postnatal refinement of callosal connections linking multiple cortical areas with ferret area 17 during the period from just before eye opening (4 weeks) to 10 weeks of age. We aimed to determine (1) whether callosal projections from multiple visual cortical areas to area 17 refine with a similar rate and (2) whether the refinement of callosal projections parallels that of intrahemispheric cortical circuits. We injected the bidirectional tracer CTb into area 17, and mapped the areal and laminar distribution of labeled cells in visual areas of the contralateral hemisphere. Like intrahemispheric projections, callosal inputs to area 17 before eye opening are dominated by Suprasylvian area Ssy (with lesser and comparable input from areas 17, 18, 19, and 21), but within 2 weeks of eye opening are jointly dominated by area 18 and Ssy inputs; however, there are fewer labeled cells in the contralateral hemisphere. Unlike intrahemispheric projections, there is no laminar reorganization of callosal inputs; in all visual areas and at all ages studied, the greatest proportion of callosal projections arises from the infragranular layers. Also, unlike intrahemispheric projections, the peak density of callosal cells in each area projecting to area 17 declines more modestly. These results reveal important similarities and differences in the postnatal reorganization of inter- and intrahemispheric projections to area 17.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Cuerpo Calloso/crecimiento & desarrollo , Hurones/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Animales
15.
Biol Rev Camb Philos Soc ; 97(1): 115-140, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34476892

RESUMEN

The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.


Asunto(s)
Longevidad , Ratas Topo , Animales , Biología
16.
Biophys J ; 100(10): 2530-8, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21575588

RESUMEN

The tectorial membrane (TM) is an extracellular matrix of the cochlea whose prominent role in hearing has been demonstrated through mutation studies. The C1509G mutation of the Tecta gene, which encodes for the α-tectorin protein, leads to hearing loss. The heterozygote TM only attaches to the first row of outer hair cells (OHCs), and the homozygote TM does not attach to any OHCs. Here we measured the morphology and mechanical properties of wild-type, heterozygous, and homozygous Tecta TMs. Morphological analyses conducted with second- and third-harmonic imaging, scanning electron microscopy, and immunolabeling revealed marked changes in the collagen architecture and stereocilin-labeling patterns of the mutant TMs. The mechanical properties of the mutant TM were measured by force spectroscopy. Whereas the axial Young's modulus of the low-frequency (apical) region of Tecta mutant TM samples was similar to that of wild-type TMs, it significantly decreased in the basal region to a value approaching that found at the apex. Modeling simulations suggest that a reduced TM Young's modulus is likely to reduce OHC stereociliary deflection. These findings argue that the heterozygote C1509G mutation results in a lack of attachment of the TM to the OHCs, which in turn reduces both the overall number of OHCs that are involved in mechanotransduction and the degree of mechanotransduction exhibited by the OHCs that remain attached to the TM.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Mutación/genética , Membrana Tectoria/metabolismo , Membrana Tectoria/ultraestructura , Animales , Fenómenos Biomecánicos , Módulo de Elasticidad , Colágenos Fibrilares/química , Proteínas Ligadas a GPI/genética , Genotipo , Heterocigoto , Homocigoto , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Mutantes , Proteínas/metabolismo , Coloración y Etiquetado
17.
Sci Transl Med ; 13(592)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952672

RESUMEN

In humans, the natural killer (NK) cell marker CD161 identifies several subsets of T cells, including a polyclonal CD8 αß T cell receptor-expressing subset with characteristic specificity for tissue-localized viruses. This subset also displays enhanced cytotoxic and memory phenotypes. Here, we characterized this unique T cell subset and determined its potential suitability for use in chimeric antigen receptor (CAR) T cell therapy. In mice, gene expression profiling among the CD161-equivalent CD8+ T cell populations (CD8+NK1.1+) revealed substantial up-regulation of granzymes, perforin, killer lectin-like receptors, and innate signaling molecules in comparison to CD8+NK1.1- T cells. Adoptive transfer of CD8+NK1.1+ cells from previously exposed animals offered substantially enhanced protection and improved survival against melanoma tumors and influenza infection compared to CD8+NK1.1- cells. Freshly isolated human CD8+CD61+ T cells exhibited heightened allogeneic killing activity in comparison to CD8+CD61- T cells or total peripheral blood mononuclear cells (PBMCs). To determine whether this subset might improve the antitumor efficacy of CAR T cell therapy against solid tumors, we compared bulk PBMCs, CD8+CD161-, and CD8+CD161+ T cells transduced with a human epidermal growth factor receptor-2 (HER2)-specific CAR construct. In vitro, CD8+CD161+ CAR-transduced T cells killed HER2+ targets faster and with greater efficiency. Similarly, these cells mediated enhanced in vivo antitumor efficacy in xenograft models of HER2+ pancreatic ductal adenocarcinoma, exhibiting elevated expression of granzymes and reduced expression of exhaustion markers. These data suggest that this T cell subset presents an opportunity to improve CAR T cell therapy for the treatment of solid tumors.


Asunto(s)
Adenocarcinoma , Memoria Inmunológica , Animales , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Ratones , Subgrupos de Linfocitos T
18.
Opt Express ; 18(22): 22693-701, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21164608

RESUMEN

We present a simple and easily implementable scheme for multiplexed Coherent Anti-Stokes Raman Scattering (CARS) spectroscopy and microscopy using a single femtosecond pulse, shaped with a narrow spectral notch. We show that a tunable spectral notch, shaped by a resonant photonic crystal slab, can serve as a narrowband, optimally time-delayed probe, resolving a broad vibrational spectrum with high spectral resolution in a single-shot measurement. Our single-source, single-beam scheme allows the simple transformation of any multiphoton microscope with adequate bandwidth into a nearly alignment-free CARS microscope.

19.
Front Neuroanat ; 14: 581478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117134

RESUMEN

Visual cortical areas in the adult mammalian brain are linked by a network of interareal feedforward and feedback circuits. We investigated the topography of feedback projections to ferret (Mustela putorius furo) area 18 from extrastriate areas 19, 21, and Ssy. Our objective was to characterize the anatomical organization of the extrastriate feedback pool to area 18. We also wished to determine if feedback projections to area 18 share similar features as feedback projections to area 17. We injected the tracer cholera toxin B subunit (CTb) into area 18 of adult ferrets to visualize the distribution and pattern of retrogradely labeled cells in extrastriate cortex. We find several similarities to the feedback projection to area 17: (i) Multiple visual cortical areas provide feedback to area 18: areas 19, 21, Ssy, and weaker inputs from posterior parietal and lateral temporal visual areas. Within each area a greater proportion of feedback projections arises from the infragranular than from the supragranular layers. (ii) The cortical area immediately rostral to area 18 provides the greatest proportion of total cortical feedback, and has the greatest peak density of cells providing feedback to area 18. (iii) The spacing (peak cell density and nearest neighbor distances) of cells in extrastriate cortex providing feedback to areas 17 and 18 are similar. However, peak density of feedback cells to area 18 is comparable in the supra- and infragranular layers, whereas peak density of feedback cells to area 17 is higher in the infragranular layers. Another prominent difference is that dorsal area 18 receives a cortical input that area 17 does not: from ventral cortex representing the upper visual field; this appears to be roughly 25% of the feedback input to area 18. Lastly, area 17 receives a greater proportion of cortical feedback from area 21 than from Ssy, whereas area 18 receives more feedback from Ssy than from area 21. While the organization of feedback projections from extrastriate cortex to areas 17 and 18 is broadly similar, the main difference in input topography might arise due to differences in visual field representations of the two areas.

20.
Front Immunol ; 11: 608024, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33384695

RESUMEN

The immune response consists of a finely-tuned program, the activation of which must be coupled with inhibitory mechanisms whenever initiated. This ensures tight control of beneficial anti-pathogen and anti-tumor responses while preserving tissue integrity, promoting tissue repair, and safeguarding against autoimmunity. A cogent example of this binary response is in the mobilization of co-stimulatory and co-inhibitory signaling in regulating the strength and type of a T-cell response. Of particular importance is the costimulatory molecule CD28 which is countered by CTLA-4. While the role of CD28 in the immune response has been thoroughly elucidated, many aspects of CTLA-4 biology remain controversial. The expression of CD28 is largely constrained to constitutive expression in T-cells and as such, teasing out its function has been somewhat simplified by a limited and specific expression profile. The expression of CTLA-4, on the other hand, while reported predominantly in T-cells, has also been described on a diverse repertoire of cells within both lymphoid and myeloid lineages as well as on the surface of tumors. Nonetheless, the function of CTLA-4 has been mostly described within the context of T-cell biology. The focus on T-cell biology may be a direct result of the high degree of amino acid sequence homology and the co-expression pattern of CD28 and CTLA-4, which initially led to the discovery of CTLA-4 as a counter receptor to CD28 (for which a T-cell-activating role had already been described). Furthermore, observations of the outsized role of CTLA-4 in Treg-mediated immune suppression and the striking phenotype of T-cell hyperproliferation and resultant disease in CTLA-4-/- mice contribute to an appropriate T-cell-centric focus in the study of CTLA-4. Complete elucidation of CTLA-4 biology, however, may require a more nuanced understanding of its role in a context other than that of T-cells. This makes particular sense in light of the remarkable, yet limited utility of anti-CTLA-4 antibodies in the treatment of cancers and of CTLA-4-Ig in autoimmune disorders like rheumatoid arthritis. By fully deducing the biology of CTLA-4-regulated immune homeostasis, bottlenecks that hinder the widespread applicability of CTLA-4-based immunotherapies can be resolved.


Asunto(s)
Antígeno CTLA-4/metabolismo , Sistema Inmunológico/metabolismo , Linfocitos T/metabolismo , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Antígeno CTLA-4/genética , Regulación de la Expresión Génica , Humanos , Sistema Inmunológico/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Transducción de Señal , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda