Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
NMR Biomed ; 27(9): 1019-29, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24913989

RESUMEN

Amide proton transfer (APT) imaging is a pH mapping method based on the chemical exchange saturation transfer phenomenon that has potential for penumbra identification following stroke. The majority of the literature thus far has focused on generating pH-weighted contrast using magnetization transfer ratio asymmetry analysis instead of quantitative pH mapping. In this study, the widely used asymmetry analysis and a model-based analysis were both assessed on APT data collected from healthy subjects (n = 2) and hyperacute stroke patients (n = 6, median imaging time after onset = 2 hours 59 minutes). It was found that the model-based approach was able to quantify the APT effect with the lowest variation in grey and white matter (≤ 13.8 %) and the smallest average contrast between these two tissue types (3.48 %) in the healthy volunteers. The model-based approach also performed quantitatively better than the other measures in the hyperacute stroke patient APT data, where the quantified APT effect in the infarct core was consistently lower than in the contralateral normal appearing tissue for all the patients recruited, with the group average of the quantified APT effect being 1.5 ± 0.3 % (infarct core) and 1.9 ± 0.4 % (contralateral). Based on the fitted parameters from the model-based analysis and a previously published pH and amide proton exchange rate relationship, quantitative pH maps for hyperacute stroke patients were generated, for the first time, using APT imaging.


Asunto(s)
Amidas/química , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Anciano de 80 o más Años , Algoritmos , Química Encefálica , Femenino , Humanos , Masculino , Protones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
IEEE Trans Med Imaging ; 27(5): 688-96, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18450541

RESUMEN

Early detection of breast cancer is one of the most important factors in determining prognosis for women with malignant tumors. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been shown to be the most sensitive modality for screening high-risk women. Computer-aided diagnosis (CAD) systems have the potential to assist radiologists in the early detection of cancer. A key component of the development of such a CAD system will be the selection of an appropriate classification function responsible for separating malignant and benign lesions. The purpose of this study is to evaluate the effects of variations in temporal feature vectors and kernel functions on the separation of malignant and benign DCE-MRI breast lesions by support vector machines (SVMs). We also propose and demonstrate a classifier visualization and evaluation technique. We show that SVMs provide an effective and flexible framework from which to base CAD techniques for breast MRI, and that the proposed classifier visualization technique has potential as a mechanism for the evaluation of classification solutions.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama/diagnóstico , Gadolinio DTPA , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda