RESUMEN
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Asunto(s)
Críquet , Gryllidae , Neuropéptidos , Animales , Ritmo Circadiano/fisiología , Locomoción , Neuropéptidos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismoRESUMEN
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light-dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light-dark-regime-raised crickets were exposed for 30 min to a light pulse of 2-40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket's circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Asunto(s)
Relojes Circadianos , Gryllidae , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Gryllidae/genética , Luz , Opsinas/metabolismo , FotoperiodoRESUMEN
Living organisms experience a worldwide continuous increase in artificial light at night (ALAN), negatively affecting their behaviour. The field cricket, an established model in physiology and behaviour, can provide insights into the effect of ALAN on insect behaviour. The stridulation and locomotion patterns of adult male crickets reared under different lifelong ALAN intensities were monitored simultaneously for five consecutive days in custom-made anechoic chambers. Daily activity periods and acrophases were compared between the experimental groups. Control crickets exhibited a robust rhythm, stridulating at night and demonstrating locomotor activity during the day. By contrast, ALAN affected both the relative level and timing of the crickets' nocturnal and diurnal activity. ALAN induced free-running patterns, manifested in significant changes in the median and variance of the activity periods, and even arrhythmic behaviour. The magnitude of disruption was light intensity dependent, revealing an increase in the difference between the activity periods calculated for stridulation and locomotion in the same individual. This finding may indicate the existence of two peripheral clocks. Our results demonstrate that ecologically relevant ALAN intensities affect crickets' behavioural patterns, and may lead to decoupling of locomotion and stridulation behaviours at the individual level, and to loss of synchronization at the population level.
Asunto(s)
Gryllidae , Animales , Ritmo Circadiano , Luz , Contaminación Lumínica , Locomoción , MasculinoRESUMEN
Light is the most important Zeitgeber for temporal synchronization in nature. Artificial light at night (ALAN) disrupts the natural light-dark rhythmicity and thus negatively affects animal behavior. However, to date, ALAN research has been mostly conducted under laboratory conditions in this context. Here, we used the field cricket, Gryllus bimaculatus, to investigate the effect of ALAN on insect behavior under semi-natural conditions, i.e., under shaded natural lighting conditions, natural temperature and soundscape. Male crickets were placed individually in outdoor enclosures and exposed to ALAN conditions ranging from <0.01 to 1500 lx intensity. The crickets' stridulation behavior was recorded for 14 consecutive days and nights and their daily activity patterns were analysed. ALAN impaired the crickets' stridulation rhythm, evoking a change in the crickets' naturally synchronized daily activity period. This was manifested by a light-intensity-dependent increase in the proportion of insects demonstrating an intrinsic circadian rhythm (free-run behavior). This also resulted in a change in the population's median activity cycle period. These ALAN-induced effects occurred despite the crickets' exposure to almost natural conditions. Our findings provide further validity to our previous studies on ALAN conducted under lab conditions and establish the deleterious impacts of ALAN on animal behavioral patterns. TEASER: Artificial light at night alters cricket behavior and desynchronizes their stridulation even under near-natural conditions.
Asunto(s)
Contaminación Lumínica , Luz , Animales , Masculino , Iluminación/efectos adversos , Ritmo Circadiano , Conducta AnimalRESUMEN
It is crucial for living organisms to be in synchrony with their environment and to anticipate circadian and annual changes. The circadian clock is responsible for entraining organisms' activity to the day-night rhythmicity. Artificial light at night (ALAN) was shown to obstruct the natural light cycle, leading to desynchronized behavioral patterns. Our knowledge of the mechanisms behind these adverse effects of ALAN, however, is far from complete. Here we monitored the stridulation and locomotion behavior of male field crickets (Gryllus bimaculatus), raised under light:dark conditions, before, during, and after exposure to a nocturnal 3-h pulse of different ALAN intensities. The experimental insects were then placed under a constant light regime (of different intensities); their behavior was continuously monitored; and the period of their daily activity rhythms was calculated. The light pulse treatment induced a simultaneous negative (suppressing stridulation) and positive (inducing locomotion) effect, manifested in significant changes in the average level of the specific activity on the night of the pulse compared to the preceding and the following nights. The transition to constant light conditions led to significant changes in the period of the circadian rhythms. Both effects were light-intensity-dependent, indicating the importance of dark nights for both individual and population synchronization.
RESUMEN
Mate choice is an important ecological behavior in fish, and is often based on visual cues of body patterns. The Crown Butterfly fish Chaetodon paucifasciatus (Chaetodontidae) is a monogamist, territorial species; it swims in close proximity to its partner throughout most of its life. This species is characterized by a pattern of 6-8 vertical black stripes on a white background, on both sides of its body. Our aim was to define spatial features (variations) in body patterns by evaluating the level of dissimilarity between both sides of each individual fish, and the level of dissimilarity between patterns of different individuals. In addition, we tested whether the fish are attracted to or reject specific features of the body patterns. Features were defined and counted using photographs of body patterns. Attraction to or rejection of specific features were tested behaviorally using a dual-choice experiment of video animations of individuals swimming over a coral-reef background. We found that the patterns of each fish and sides of the body were no less dissimilar, compared intraspecificly to other fish, and that each side pattern was unique and distinguishable. Variations in the patterns occurred mostly in the last three posterior stripes. Individuals were mainly attracted to conspecifics with multiple crossing patterns (two or more consecutive crossings), and rejected patterns with holes. Our results suggest that in this species the unique body pattern of each fish is used for conspecific identification of mates and intruders.