Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Publication year range
1.
Front Bioeng Biotechnol ; 10: 835378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265604

RESUMEN

Argentina currently has a regulation for genome-editing products whose criteria were updated as consultations were received to determine the regulatory status of these products. The aim of this regulation is to consider all organisms (animals, micro-organisms and plants) under the same NBT resolution independently and without being linked to commercial Genetically Modified Organism (GMO) regulations. This gives certainty to local researchers and developers (teams of local developers and researchers), which can be seen in the number of developments and consultations carried out. It should be noted that early results showed that the speed of innovation of these technologies was increasing in a short time, giving more opportunity to local developers who showed interest in generating products in different species, crops and phenotypes.

2.
J Genet Eng Biotechnol ; 19(1): 171, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750689

RESUMEN

BACKGROUND: Biotechnological breeding of elite sugarcane cultivars is currently limited because of the difficulty of regenerating plants by tissue culture. Here, we report that commercially elite sugarcane genotypes, which are adapted to Argentinian agro-ecological conditions, are capable of being regenerated via indirect somatic embryogenesis. Leaf rolls of five elite genotypes were cultured following two callus induction protocols using different concentrations of 2,4-D as the growth regulator. Embryogenic calluses were regenerated under light conditions. Regenerated plants were subsequently acclimatized in the greenhouse under two acclimatization procedures before being transplanted to the field. RESULTS: Four of the five genotypes were able to form somatic embryos following the two induction protocols. The variables related to embryogenic callus production were influenced by the interaction between genotype and culture conditions. For plant regeneration, the embryogenic calluses were further cultured on an IBA-supplemented medium, where we observed a high genotype dependence. Calluses from the four cultivars regenerated a good number of plants. With the procedures described here, we obtained more than 90% of well-acclimatized plants both in the greenhouse and in the field. CONCLUSIONS: This protocol provides a simple way to regenerate sugarcane plants through indirect somatic embryogenesis. Also, the results confirm that tissue culture ability is highly genotype-dependent in sugarcane. Our findings suggest that these elite cultivars could be good candidates for biotechnological breeding.

3.
Front Bioeng Biotechnol ; 9: 834589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174149

RESUMEN

The Environmental Risk Assessment (ERA) of genetically modified (GM) crops in Argentina is carried out by the National Advisory Commission on Agricultural Biotechnology (CONABIA) and the Innovation and Biotechnology Coordination (CIyB). Both have a large experience with this assessment, since 1991, when CONABIA was created. The continuous support to biotechnology as a state policy and as part of the decision to encourage developers in the regulatory process has helped make progress in the revision of the regulations. The experience gained during the last 30 years and the worldwide scientific advances supported the bases to update the regulatory framework. Focusing on the biosafety strengthening and the improvement of the applicant's experience in the GM crops evaluation process, during 2020 and 2021, the ERA went through a reviewing process. Some important modifications were made, such as (i) the assessment of stacked GM crops with focus on the possible interactions between transgenes and the expression products, (ii) the strengthening of the ERA taking into account the transportability of data and conclusions from the Confined Field Trials (CFTs), (iii) the adoption of Familiarity and History of Safe Use (HOSU) concepts on the risk assessment of the expression products, (iv) the special considerations for the unintended effects of insertional sites, and (v) as a post commercial release of GM crops, the Insect Resistance Management Plan (IRMP) was reformulated. These novel approaches enhance the ERA; they make it more efficient by applying the science criteria and the accumulated experience and scientific bibliography on the topic.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32328485

RESUMEN

Plant biotechnology in Argentina started at the end of the 1980s, leading to the development of numerous research groups in public institutions and, a decade later, to some local private initiatives. The numerous scientific and technological capacities existing in the country allowed the early constitution in 1991 of a sound genetically modified organisms biosafety regulatory system. The first commercial approvals began in 1996, and to date, 59 events have obtained permits to be placed on the market, however, only two have been developed locally by public-private partnerships. The transgenic events developed at public institutions pursue different objectives in diverse crops. However, once these events have been developed in laboratories, it is difficult to move toward a possible commercial approval. In this work, we analyze several reasons that could explain why local developments have not reached approvals for commercialization, highlighting aspects related to the lack of strategic vision in the institutions to focus resources on projects to develop biotechnological products. Although progress has been made in generating regulatory rules adapted to research institutes (such as the regulations for biosafety greenhouses and ways of presenting applications), researchers still do not conceive regulatory science as a discipline. They generally prefer not to be involved in the design of regulatory field trials or regulatory issues related to the evaluation of events. In that sense, some of the aspects considered a regulatory affairs platform for the public scientific system and the reinforcement of laboratories that perform tests required under the Argentine regulation.

5.
Electron. j. biotechnol ; Electron. j. biotechnol;15(1): 9-9, Jan. 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-640535

RESUMEN

Somatic embryogenesis, which is still the method of choice for tissue culture, regeneration and transformation of maize, is largely considered highly genotype-dependent. The Hi II, a highly embryogenic genotype, has been extensively used in transformation protocols. However, this is not an inbred line; instead, it has a proportion of the undesirable A-188 background, and the progeny segregates for phenotypic characteristics and shows poor agronomic performance. In an effort to identify genotypes that combine a high somatic embryogenic response and good agronomic performance, we evaluated 48 advanced inbred lines developed at INTA. Callus development and somatic embryogenesis capacity were measured in 200 immature embryos per line. Embryogenic capacity [EC (mature somatic embryos/callus evaluated) x 100], Regeneration Capacity (RC) and Fertile Plant Recovery in greenhouse (FPR, fertile plants/regenerated plants) were recorded. A total of 17 lines reached an EC > 50 percent, and 14 out of those 17 lines regenerated seedlings. The FPR ranged between 50 and 100 percent. Also, we selected three promising lines with high agronomic performance, as alternatives to Hi II, in order to be included in a maize transformation scheme via somatic embryogenesis. In addition, we report the usefulness of Single Sequences Repeat (SSRs) in the determination of genetic diversity among 14 divergent lines for somatic embryogenesis response. The seven lines displaying good in vitro behaviour can be crossed to obtain hybrids combining desirable alleles for somatic embryogenesis response and different genetic backgrounds.


Asunto(s)
Técnicas de Embriogénesis Somática de Plantas , Regeneración , Zea mays/embriología , Zea mays/fisiología , Variación Genética , Zea mays/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda