Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121857

RESUMEN

Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.

2.
BMC Med Res Methodol ; 24(1): 27, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302887

RESUMEN

BACKGROUND: Standard pediatric growth curves cannot be used to impute missing height or weight measurements in individual children. The Michaelis-Menten equation, used for characterizing substrate-enzyme saturation curves, has been shown to model growth in many organisms including nonhuman vertebrates. We investigated whether this equation could be used to interpolate missing growth data in children in the first three years of life and compared this interpolation to several common interpolation methods and pediatric growth models. METHODS: We developed a modified Michaelis-Menten equation and compared expected to actual growth, first in a local birth cohort (N = 97) then in a large, outpatient, pediatric sample (N = 14,695). RESULTS: The modified Michaelis-Menten equation showed excellent fit for both infant weight (median RMSE: boys: 0.22 kg [IQR:0.19; 90% < 0.43]; girls: 0.20 kg [IQR:0.17; 90% < 0.39]) and height (median RMSE: boys: 0.93 cm [IQR:0.53; 90% < 1.0]; girls: 0.91 cm [IQR:0.50;90% < 1.0]). Growth data were modeled accurately with as few as four values from routine well-baby visits in year 1 and seven values in years 1-3; birth weight or length was essential for best fit. Interpolation with this equation had comparable (for weight) or lower (for height) mean RMSE compared to the best performing alternative models. CONCLUSIONS: A modified Michaelis-Menten equation accurately describes growth in healthy babies aged 0-36 months, allowing interpolation of missing weight and height values in individual longitudinal measurement series. The growth pattern in healthy babies in resource-rich environments mirrors an enzymatic saturation curve.


Asunto(s)
Cinética , Masculino , Lactante , Femenino , Humanos , Niño , Peso al Nacer
3.
Nat Biotechnol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898177

RESUMEN

Microbial species diversify into strains through single-nucleotide mutations and structural changes, such as recombination, insertions and deletions. Most strain-comparison methods quantify differences in single-nucleotide polymorphisms (SNPs) and are insensitive to structural changes. However, recombination is an important driver of phenotypic diversification in many species, including human pathogens. We introduce SynTracker, a tool that compares microbial strains using genome synteny-the order of sequence blocks in homologous genomic regions-in pairs of metagenomic assemblies or genomes. Genome synteny is a rich source of genomic information untapped by current strain-comparison tools. SynTracker has low sensitivity to SNPs, has no database requirement and is robust to sequencing errors. It outperforms existing tools when tracking strains in metagenomic data and is particularly suited for phages, plasmids and other low-data contexts. Applied to single-species datasets and human gut metagenomes, SynTracker, combined with an SNP-based tool, detects strains enriched in either point mutations or structural changes, providing insights into microbial evolution in situ.

4.
Cell Host Microbe ; 32(6): 1025-1036.e5, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38795710

RESUMEN

The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.


Asunto(s)
Bacteroides thetaiotaomicron , Colon , Microbioma Gastrointestinal , Lipidómica , Animales , Ratones , Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/fisiología , Colon/microbiología , Colon/metabolismo , Lípidos/análisis , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolismo de los Lípidos , Vida Libre de Gérmenes , Organismos Libres de Patógenos Específicos , Ácidos Fosfatidicos/metabolismo , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esfingolípidos/metabolismo , Ratones Endogámicos C57BL , Femenino
5.
mBio ; 15(2): e0283623, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132571

RESUMEN

The gut bacteria of the family Christensenellaceae are consistently associated with metabolic health, but their role in promoting host health is not fully understood. Here, we explored the effect of Christensenella minuta amendment on voluntary physical activity and the gut microbiome. We inoculated male and female germ-free mice with an obese human donor microbiota together with live or heat-killed C. minuta for 28 days and measured physical activity in respirometry cages. Compared to heat-killed, the live-C. minuta treatment resulted in reduced feed efficiency and higher levels of physical activity, with significantly greater distance traveled for males and higher levels of small movements and resting metabolic rate in females. Sex-specific effects of C. minuta treatment may be in part attributable to different housing conditions for males and females. Amendment with live C. minuta boosted gut microbial biomass in both sexes, immobilizing dietary carbon in the microbiome, and mice with high levels of C. minuta lose more energy in stool. Live C. minuta also reduced within and between-host gut microbial diversity. Overall, our results showed that C. minuta acts as a keystone species: despite low relative abundance, it has a large impact on its ecosystem, from the microbiome to host energy homeostasis.IMPORTANCEThe composition of the human gut microbiome is associated with human health. Within the human gut microbiome, the relative abundance of the bacterial family Christensenellaceae has been shown to correlate with metabolic health and a lean body type. The mechanisms underpinning this effect remain unclear. Here, we show that live C. minuta influences host physical activity and metabolic energy expenditure, accompanied by changes in murine metabolism and the gut microbial community in a sex-dependent manner in comparison to heat-killed C. minuta. Importantly, live C. minuta boosts the biomass of the microbiome in the gut, and a higher level of C. minuta is associated with greater loss of energy in stool. These observations indicate that modulation of activity levels and changes to the microbiome are ways in which the Christensenellaceae can influence host energy homeostasis and health.


Asunto(s)
Clostridiales , Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Femenino , Animales , Ratones , Biomasa , Heces/microbiología , Bacterias/metabolismo
6.
Lancet Microbe ; 5(8): 100843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38608681

RESUMEN

The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.


Asunto(s)
Bacterias , Infecciones Bacterianas , Microbiota , Simbiosis , Humanos , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/transmisión , Bacterias/patogenicidad , Bacterias/efectos de los fármacos , Animales , Interacciones Huésped-Patógeno , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
7.
mSystems ; 9(8): e0062724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39012154

RESUMEN

Clostridia are abundant in the human gut and comprise families associated with host health such as Oscillospiraceae, which has been correlated with leanness. However, culturing bacteria within this family is challenging, leading to their detection primarily through 16S rRNA amplicon sequencing, which has a limited ability to unravel diversity at low taxonomic levels, or by shotgun metagenomics, which is hindered by its high costs and complexity. In this cross-sectional study involving 114 Colombian adults, we used an amplicon-based sequencing strategy with alternative markers-gyrase subunit B (gyrB) and DNA K chaperone heat protein 70 (dnaK)-that evolve faster than the 16S rRNA gene. Comparing the diversity and abundance observed with the three markers in our cohort, we found a reduction in the diversity of Clostridia, particularly within Lachnospiraceae and Oscillospiraceae among obese individuals [as measured by the body mass index (BMI)]. Within Lachnospiraceae, the diversity of Ruminococcus_A negatively correlated with BMI. Within Oscillospiraceae, the genera CAG-170 and Vescimonas also exhibited this negative correlation. In addition, the abundance of Vescimonas was negatively correlated with BMI. Leveraging shotgun metagenomic data, we conducted a phylogenetic and genomic characterization of 120 metagenome-assembled genomes from Vescimonas obtained from a larger sample of the same cohort. We identified 17 of the 72 reported species. The functional annotation of these genomes showed the presence of multiple carbohydrate-active enzymes, particularly glycosyl transferases and glycoside hydrolases, suggesting potential beneficial roles in fiber degradation, carbohydrate metabolism, and butyrate production. IMPORTANCE: The gut microbiota is diverse across various taxonomic levels. At the intra-species level, it comprises multiple strains, some of which may be host-specific. However, our understanding of fine-grained diversity has been hindered by the use of the conserved 16S rRNA gene. While shotgun metagenomics offers higher resolution, it remains costly, may fail to identify specific microbes in complex samples, and requires extensive computational resources and expertise. To address this, we employed a simple and cost-effective analysis of alternative genetic markers to explore diversity within Clostridia, a crucial group within the human gut microbiota whose diversity may be underestimated. We found high intra-species diversity for certain groups and associations with obesity. Notably, we identified Vescimonas, an understudied group. Making use of metagenomic data, we inferred functionality, uncovering potential beneficial roles in dietary fiber and carbohydrate degradation, as well as in short-chain fatty acid production.


Asunto(s)
Microbioma Gastrointestinal , Obesidad , Humanos , Microbioma Gastrointestinal/genética , Obesidad/microbiología , Masculino , Adulto , Femenino , Estudios Transversales , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Metagenómica/métodos , Índice de Masa Corporal
8.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562901

RESUMEN

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda