Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 133(7): 078201, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39213551

RESUMEN

We investigate the flow of an electrolyte through a rigid nanochannel decorated with a surface charge pattern. Employing lattice Boltzmann and dissipative particle dynamics methods, as well as analytical theory, we show that the electrohydrodynamic coupling leads to two distinct flow regimes. The accompanying discontinuous transition between slow, ionic, and fast, Poiseuille flows is observed at intermediate ion concentrations, channel widths, and electrostatic coupling strengths. These findings indicate routes to design nanochannels containing a typical aqueous electrolyte that exhibit a digital on-off flux response, which could be useful for nanofluidics and ionotronic applications.

2.
Nano Lett ; 22(18): 7408-7414, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36062566

RESUMEN

In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane. In this regime, we exploit the triangle asymmetric shape to obtain a transversal drift which is later used to transport the microtriangle in any direction along the plane. We explain this friction-induced anisotropic sliding with a minimal numerical model capable to reproduce the experimental results. Due to the flexibility offered by soft-lithographic sculpturing, our method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures operating in fluid media.


Asunto(s)
Campos Magnéticos , Magnetismo , Anisotropía , Fricción , Movimiento (Física)
3.
Phys Rev E ; 109(1-1): 014618, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366435

RESUMEN

We study computationally the dynamics of forced, Brownian particles through a disordered system. As the concentration of mobile particles and/or fixed obstacles increase, we characterize the different regimes of flow and address how clogging develops. We show that clogging is preceded by a wide region of anomalous transport, characterized by a power law decay of intermittent bursts. We analyze the velocity distribution of the moving particles and show that this abnormal flow region is characterized by a coexistence between mobile and arrested particles, and their relative populations change smoothly as clogging is approached. The comparison of the regimes of anomalous transport and clogging with the corresponding scenarios of particles pushed through a single bottleneck show qualitatively the same trends highlighting the generality of the transport regimes leading to clogging.

4.
Nat Commun ; 15(1): 5666, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971861

RESUMEN

Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active colloidal rafts, composed of a single catalytic particle encircled by several shells of passive microspheres, and assembled via light-activated chemophoresis. We show that the cluster propulsion mechanism transits from diffusiophoretic to diffusioosmotic as the number of colloidal shells increases. Using the Lorentz reciprocal theorem, we demonstrate that in large clusters self-propulsion emerges by considering the hydrodynamic flow via the diffusioosmotic response of the substrate. The dynamics in our active colloidal rafts are governed by the interplay between phoretic and osmotic effects. Thus, our work highlights their importance in understanding the rich physics of active catalytic systems.

5.
Sci Adv ; 8(23): eabo4546, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675407

RESUMEN

Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable phenomena on the transport and assembly of interacting Brownian particles. We demonstrate that HIs induce the resynchronization with the traveling wave that emerges as a "speed-up" effect, characterized by a net raise of the translational speed, which doubles that of single particles. When competing with dipolar forces and the underlying substrate symmetry, HIs promote the formation of clusters that grow perpendicular to the driving direction. We support our findings both with Langevin dynamics and with a theoretical model that accounts for the fluid-mediated interactions. Our work illustrates the role of the dispersing medium on the dynamics of driven colloidal matter and unveils the growing process and cluster morphologies above a periodic substrate.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda