Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Photosynth Res ; 88(1): 43-50, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16688490

RESUMEN

The excitation energy transfer between carotenoid and chlorophyll (Chl) in the cytochrome b ( 6 ) f complex from Bryopsis corticulans (B. corticulans), in which the carotenoid is 9-cis-alpha-carotene, was investigated by means of fluorescence excitation and sub-microsecond time-resolved absorption spectroscopies. The presence of efficient singlet excitation transfer from alpha-carotene to Chl a was found with an overall efficiency as high as approximately approximately 24%, meanwhile the Chl a-to-alpha-carotene triplet excitation transfer was also evidenced. Circular dichroism spectroscopy showed that alpha-carotene molecule existed in an asymmetric environment and Chl a molecule had a certain orientation in this complex.


Asunto(s)
Carotenoides/metabolismo , Clorofila/metabolismo , Chlorophyta/metabolismo , Complejo de Citocromo b6f/metabolismo , Transferencia de Energía , Clorofila A , Espectrometría de Fluorescencia
2.
Biophys J ; 90(11): 4145-54, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16565047

RESUMEN

Ultrafast carotenoid-to-chlorophyll (Car-to-Chl) singlet excitation energy transfer in the cytochrome b(6)f (Cyt b(6)f) complex from Bryopsis corticulans is investigated by the use of femtosecond time-resolved absorption spectroscopy. For all-trans-alpha-carotene free in n-hexane, the lifetimes of the two low-lying singlet excited states, S(1)(2A(g)(-)) and S(2)(1B(u)(+)), are determined to be 14.3 +/- 0.4 ps and 230 +/- 10 fs, respectively. For the Cyt b(6)f complex, to which 9-cis-alpha-carotene is bound, the lifetime of the S(1)(2A(g)(-)) state remains unchanged, whereas that of the S(2)(1B(u)(+)) state is significantly reduced. In addition, a decay-to-rise correlation between the excited-state dynamics of alpha-carotene and Chl a is clearly observed. This spectroscopic evidence proves that the S(2)(1B(u)(+)) state is able to transfer electronic excitations to the Q(x) state of Chl a, whereas the S(1)(2A(g)(-)) state remains inactive. The time constant and the partial efficiency of the energy transfer are determined to be 240 +/- 40 fs and (49 +/- 4)%, respectively, which supports the overall efficiency of 24% determined with steady-state fluorescence spectroscopy. A scheme of the alpha-carotene-to-Chl a singlet energy transfer is proposed based on the excited-state dynamics of the pigments.


Asunto(s)
Carotenoides/química , Clorofila/química , Chlorophyta/química , Complejo de Citocromo b6f/química , Chlorophyta/fisiología , Transferencia de Energía , Hexanos/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda