Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Small ; : e2402993, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750614

RESUMEN

2D covalent organic framework (COF) materials with extended conjugated structure and periodic columnar π-arrays exhibit promising applications in organic optoelectronics. However, there is a scarcity of reports on optoelectronic COFs, mainly due to the lack of suitable π-skeletons. Here, two multi-functional optoelectronic 2D COFs DPP-TPP-COF and DPP-TBB-COF are constructed with diketopyrrolopyrrole as electron acceptor (A), and 1,3,6,8-tetraphenylpyrene and 1,3,5-triphenylbenzene as electron donor (D) through imine bonds. Both 2D COFs showed good crystallinities and AA stacking with a rhombic framework for DPP-TPP-COF and hexagonal one for DPP-TBB-COF, respectively. The electron D-A and ordered intermolecular packing structures endow the COFs with broad UV-vis absorptions and narrow bandgaps along with suitable HOMO/LUMO energy levels, resulting in multi-functional optoelectronic properties, including photothermal conversion, supercapacitor property, and ambipolar semiconducting behavior. Among them, DPP-TPP-COF exhibits a high photothermal conversion efficiency of 47% under 660 nm laser irradiation, while DPP-TBB-COF exhibits superior specific capacitance of 384 F g-1. Moreover, P-type doping and N-type doping are achieved by iodine and tetrakis(dimethylamino)ethylene on a single host COF, resulting in ambipolar semiconducting behavior. These results provide a paradigm for the application of multi-functional optoelectronic COF materials.

2.
Angew Chem Int Ed Engl ; 62(33): e202307776, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37358791

RESUMEN

The low oxygen dependence of type I photosensitizers (PSs) has made them a popular choice for treating solid tumors. However, the drawbacks of poor water solubility, short emission wavelength, poor stability, and inability to distinguish cancer cells from normal cells limit the application of most type I PSs in clinical therapy. Thereby, developing novel type I PSs for overcoming these problems is an urgent but challenging task. Herein, by utilizing the distinctive structural characteristics of anion-π+ interactions, a highly water-soluble type I PS (DPBC-Br) with aggregation-induced emission (AIE) characteristic and near-infrared (NIR) emission is fabricated for the first time. DPBC-Br displays remarkable water solubility (7.3 mM) and outstanding photobleaching resistance, enabling efficient and precise differentiation between tumor cells and normal cells in a wash-free and long-term tracking manner via NIR-I imaging. Additionally, the superior type I reactive oxygen species (ROS) produced by DPBC-Br provide both specific killing of cancer cells in vitro and inhibition of tumor growth in vivo, with negligible systemic toxicity. This study rationally constructs a highly water-soluble type I PS, which has higher reliability and controllability compared with conventional nanoparticle formulating procedures, offering great potential for clinical cancer treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Agua , Reproducibilidad de los Resultados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Diagnóstico por Imagen , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno
3.
Chemistry ; 28(63): e202202388, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35969216

RESUMEN

Pathogenic bacteria infections, especially multidrug resistant bacteria infections have aroused worldwide attention due to their severe threats to human beings. Thus, the development of highly effective antibacterial reagents is very important. However, the design of antimicrobials is still quite challenging for the lack of a universal design strategy. Here, a synergistic manipulation strategy of dipole-dipole and anion-π+ interaction is proposed for constructing highly efficient antimicrobials with aggregation-induced emission (AIE) feature. Firstly, four anion-π+ -type AIE luminogens were designed and synthesized. Due to the electron-donating and hydrophilic characteristic of methoxy groups, 3MOTPO containing three methoxy groups showed the largest dipole moment (5.06 Debye) and dual anion-π+ interactions in the solid state. Driven by both dipole-dipole and anion-π+ interactions, 3MOTPO showed the strongest bacterial binding ability and the best antibacterial activities (MIC90 =3.76 µM). The work offers a deep insight into the rational design of highly efficient antimicrobials for luminescence-guided antibacterial study.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Aniones , Luminiscencia , Bacterias
4.
Angew Chem Int Ed Engl ; 61(50): e202212673, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36256574

RESUMEN

The performances of second near-infrared (NIR-II) organic phototheranostic agents (OPTAs) depend on both molecular structure and molecular packing when used as nanoparticles (NPs). Herein, we proposed a facile structural isomerization-induced 3D spatial donor (D)-acceptor (A) interlocked network for achieving NIR-II OPTAs. Two isomers, 4MNVDPP and 6MNVDPP were synthesized and formulated into NPs. 6MNVDPP, which has a larger electrostatic potential difference, exhibits a compact 3D spatial D-A interlocked network in the crystal form, while 4MNVDPP forms 2D D-D type J-aggregates. Thus, 6MNVDPP NPs show red-shifted NIR absorption and larger molar extinction coefficient than 4MNVDPP NPs. Thanks to the typical NIR-II emission, superior photothermal-stability, high photothermal conversion efficiency (89 %) and reactive oxygen species production capacity, 6MNVDPP NPs exhibit outstanding NIR-II tiny capillary vasculature/tumor imaging ability and synergistic photothermal/photodynamic anti-cancer effect in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Nanomedicina Teranóstica/métodos , Técnicas Fotoacústicas/métodos , Isomerismo , Nanopartículas/química , Fototerapia
5.
Anal Chem ; 91(20): 12611-12614, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31558016

RESUMEN

Lysosomal ß-N-acetylhexosaminidase (Hex) has been reported to possess unique physiological performances. Detection and visualization of Hex in lysosome will be favorable to reveal the basis of its functions. However, Hex-specific fluorescent probes are rarely reported. In this study, we reported the first lysosome-targeting Hex-lighting-up aggregation-induced emission (AIE)-active fluorescent probe (GlcNAc-TPE) with remarkably large Stokes shift and high sensitivity and selectivity. GlcNAc-TPE can selectively locate in lysosome and visualize endogenous Hex in live HCT116 cells and in live mice with high stability and good biocompatibility, providing a useful AIE probe for real-time visualization of Hex in live samples.


Asunto(s)
Colorantes Fluorescentes/química , Lisosomas/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Materiales Biocompatibles/metabolismo , Células HCT116 , Humanos , Concentración de Iones de Hidrógeno , Ratones , Microscopía Confocal , Imagen Óptica
6.
Anal Chem ; 91(11): 6996-7000, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31088071

RESUMEN

It is highly desirable to realize real-time monitoring of the drug delivery/release process in cancer treatment. Herein, a monitorable mitochondria-specific DNAtrain (MitoDNAtrs) was developed for image-guided drug delivery and synergistic cancer therapy. In this system, mitochondria-targeting Cy5.5 dye served as the "locomotive" to guide the DNA "vehicle" selectively accumulating in the cancer cells in a detectable manner. More importantly, Cy5.5 showed reactive oxygen species (ROS) generation ability, which made it a promising adjuvant chemotherapy amplifier for cancer theranostics.


Asunto(s)
Antineoplásicos/administración & dosificación , Carbocianinas/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Mitocondrias/efectos de los fármacos , Carbocianinas/química , ADN/química , ADN/farmacocinética , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Sinergismo Farmacológico , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Sulfobromoftaleína/farmacología , Nanomedicina Teranóstica/métodos
7.
Anal Chem ; 91(15): 9388-9392, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31315395

RESUMEN

Carbon monoxide (CO) is a significant gasotransmitter that naturally modulates inflammatory responses. Visualization of CO in situ would help to reveal its physiological/pathological functions. Unfortunately, most existing CO fluorescent probes show aggregation-caused quenching (ACQ) properties. Herein, we report the reaction-based fluorescent probe (BTCV-CO) with aggregation-induced emission (AIE) characteristics for CO detection and imaging. This ratiometric AIE probe showed excellent stability, high sensitivity (detection limit of 30.8 nM), and superior selectivity. More importantly, this CO-responsive AIE probe could be facilely designed and easily obtained by two-step synthesis with high yield, providing an easy-to-handle AIE toolbox for real-time visualization of CO in a living system.


Asunto(s)
Monóxido de Carbono/análisis , Imagen Molecular/métodos , Análisis por Conglomerados , Colorantes Fluorescentes , Límite de Detección , Imagen Molecular/normas , Sondas Moleculares/normas
8.
Metabolites ; 14(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39195542

RESUMEN

Fufang Muji granules (FMGs) are a prominent modern prescription Chinese patent formulation derived from the Muji decoction. Utilized in clinical practice for nearly four decades, FMGs have demonstrated efficacy in treating liver diseases. However, the precise mechanism of action remains unclear. This study investigates the hepatoprotective effects of FMGs against liver fibrosis in rats based on untargeted metabolomics and elucidates their underlying mechanisms. A comprehensive model of liver fibrosis was established with 30% CCl4 (2 mL/kg) injected intraperitoneally, and a fat and sugar diet combined with high temperatures and humidity. Rats were orally administered FMGs (3.12 g/kg/d) once daily for six weeks. FMG administration resulted in improved liver fibrosis and attenuated hepatic oxidative stress and apoptosis. Furthermore, FMGs inhibited hepatic stellate cell activation and modulated transforming growth factor ß1/Smad signaling. Additionally, FMG treatment influenced the expression levels of interleukin-6, interleukin-1ß, and tumour necrosis factor alpha in the injured liver. Metabolic pathways involving taurine and hypotaurine metabolism, as well as primary bile acid biosynthesis, were identified as mechanisms of action for FMGs. Immunohistochemistry, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and quantitative analysis also revealed that FMGs regulated taurine and hypotaurine metabolism and bile acid metabolism. These findings provide a valuable understanding of the role of FMGs in liver fibrosis management.

9.
Nat Commun ; 15(1): 5832, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992020

RESUMEN

While second near-infrared (NIR-II) fluorescence imaging is a promising tool for real-time surveillance of surgical operations, the previously reported organic NIR-II luminescent materials for in vivo imaging are predominantly activated by expensive lasers or X-ray with high power and poor illumination homogeneity, which significantly limits their clinical applications. Here we report a white-light activatable NIR-II organic imaging agent by taking advantages of the strong intramolecular/intermolecular D-A interactions of conjugated Y6CT molecules in nanoparticles (Y6CT-NPs), with the brightness of as high as 13315.1, which is over two times that of the brightest laser-activated NIR-II organic contrast agents reported thus far. Upon white-light activation, Y6CT-NPs can achieve not only in vivo imaging of hepatic ischemia reperfusion, but also real-time monitoring of kidney transplantation surgery. During the surgery, identification of the renal vasculature, post-reconstruction assessment of renal allograft vascular integrity, and blood supply analysis of the ureter can be vividly depicted by using Y6CT-NPs with high signal-to-noise ratios upon clinical laparoscopic LED white-light activation. Our work provides efficient molecular design guidelines towards white-light activatable imaging agent and highlights an opportunity for precision imaging theranostics.


Asunto(s)
Imagen Óptica , Cirugía Asistida por Computador , Animales , Cirugía Asistida por Computador/métodos , Ratones , Imagen Óptica/métodos , Luz , Nanoestructuras/química , Trasplante de Riñón/métodos , Humanos , Hígado/diagnóstico por imagen , Hígado/cirugía , Nanopartículas/química , Rayos Infrarrojos , Luminiscencia , Riñón/diagnóstico por imagen , Riñón/cirugía , Masculino , Espectroscopía Infrarroja Corta/métodos , Medios de Contraste/química
10.
Chem Sci ; 15(32): 13001-13010, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39148804

RESUMEN

The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.

11.
Chem Commun (Camb) ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171688

RESUMEN

We designed two series of NIR-II PTAs with D-A or D-A-D structures, in which the introduction of thiophene promotes a bathochromic shift of emission into the NIR-II region, helps to improve the cellular uptake of the PTAs and facilitates NIR-II imaging-guided PDT/PTT cancer phototherapy.

12.
Chem Sci ; 14(3): 684-690, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36741529

RESUMEN

Photosensitizers with aggregation-induced emission (AIE PSs) were widely explored in photodynamic therapy. Numerous acceptors but few donors were reported to design AIE PSs. In this study, we developed a new kind of donor that can improve the comprehensive performance of AIE PSs by expanding the π extension of aromatic rings at the end of the triphenylamine group through acene enlargement. The absorption and fluorescence peaks of anthryl-substituted AIE PS are red-shifted by 29 nm and 42 nm; the photosensitization efficiency is enhanced by 1.16 times; the AIE factor is 86.1 and the fluorescence quantum yield is 9.3%. We also demonstrated that the anthryl-based AIE PS can image and ablate cancer cells well both in vitro and in vivo. The anthryl-triphenylamine donor provides an excellent option to design donor-acceptor AIE PSs with high comprehensive performance.

13.
Adv Mater ; 35(3): e2208229, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36300808

RESUMEN

Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Halogenación , Nanomedicina Teranóstica/métodos , Fototerapia , Terapia Fototérmica , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
14.
Chem Sci ; 14(18): 4863-4871, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37181775

RESUMEN

Type I photosensitizers (PSs) with an aggregation-induced emission (AIE) feature have received sustained attention for their excellent theranostic performance in the treatment of clinical diseases. However, the development of AIE-active type I PSs with strong reactive oxygen species (ROS) production capacity remains a challenge due to the lack of in-depth theoretical studies on the aggregate behavior of PSs and rational design strategies. Herein, we proposed a facile oxidization strategy to enhance the ROS generation efficiency of AIE-active type I PSs. Two AIE luminogens, MPD and its oxidized product MPD-O were synthesized. Compared with MPD, the zwitterionic MPD-O showed higher ROS generation efficiency. The introduction of electron-withdrawing oxygen atoms results in the formation of intermolecular hydrogen bonds in the molecular stacking of MPD-O, which endowed MPD-O with more tightly packed arrangement in the aggregate state. Theoretical calculations demonstrated that more accessible intersystem crossing (ISC) channels and larger spin-orbit coupling (SOC) constants provide further explanation for the superior ROS generation efficiency of MPD-O, which evidenced the effectiveness of enhancing the ROS production ability by the oxidization strategy. Moreover, DAPD-O, a cationic derivative of MPD-O, was further synthesized to improve the antibacterial activity of MPD-O, showing excellent photodynamic antibacterial performance against methicillin-resistant S. aureus both in vitro and in vivo. This work elucidates the mechanism of the oxidization strategy for enhancing the ROS production ability of PSs and offers a new guideline for the exploitation of AIE-active type I PSs.

15.
ACS Nano ; 17(15): 14347-14405, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486125

RESUMEN

Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.


Asunto(s)
Colorantes Fluorescentes , Sustancias Luminiscentes , Colorantes Fluorescentes/química , Luminiscencia , Diagnóstico por Imagen , Atención a la Salud
16.
Artículo en Inglés | MEDLINE | ID: mdl-35442868

RESUMEN

As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (Takifugu rubripes). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern. Here, we investigated the metabolism of MBZ using a UPLC-Q-TOF system. Additionally, we evaluated the pharmacokinetics of MBZ and two metabolites, 2-amino-5(6)-benzoylbenzimidazole (MBZ-NH2) and 5-hydroxymebendazole (MBZ-OH), in Japanese pufferfish following intramuscular injection of 20 mg/kg MBZ. We detected three metabolites of MBZ (M1-M3), among which, 2-amino-5(6)-(a-hydroxybenzyl) benzimidazole (M3) was detected in an aquatic animal for the first time. The plasma dispositions of MBZ, MBZ-NH2, and MBZ-OH were characterized by low plasma clearance, medium distribution volume, and long terminal half-life. Moreover, these compounds were widely distributed in the muscle, from which they were rapidly cleared. The pharmacokinetics and metabolism of mebendazole in Japanese pufferfish are described for the first time in this study. Our findings provide a basis for the rational application of MBZ in Japanese pufferfish farming and contribute to our understanding of the metabolism of MBZ in cultured fish.


Asunto(s)
Mebendazol , Takifugu , Animales , Bencimidazoles/metabolismo , Mebendazol/metabolismo , Músculos/metabolismo , Takifugu/metabolismo
17.
Biosensors (Basel) ; 12(7)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35884287

RESUMEN

Hepatocellular carcinoma (HCC) is associated with a high mortality rate worldwide. The therapeutic outcomes can be significantly improved if diagnosis and treatment are initiated earlier in the disease process. Recently, the carboxylesterase (CaE) activity/level in human plasma was reported to be a novel serological biomarker candidate for HCC. In this article, we fabricated a new fluorescent probe with AIE characteristics for the rapid detection of CaE with a more reliable ratiometric response mode. The TCFISE probe showed high sensitivity (LOD: 93.0 µU/mL) and selectivity toward CaE. Furthermore, the good pH stability, superior resistance against photobleaching, and low cytotoxicity highlight the high potential of the TCFISE probe for application in the monitoring of CaE activity in complex biological samples and in live cells, tissues, and animals.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carboxilesterasa , Carcinoma Hepatocelular/diagnóstico , Colorantes Fluorescentes , Humanos , Neoplasias Hepáticas/diagnóstico , Espectrometría de Fluorescencia
18.
Int J Nanomedicine ; 17: 5547-5563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36444194

RESUMEN

Introduction: Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed on 90% of stage I-III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide plCSA had strong binding activity with TNBC cell lines and tumor tissue. Here, we combined the AIEgens TBZ-DPNA and therapy drug paclitaxel (PTX) to fabricate near-infrared fluorescence-guided nanodrug (plCSA-NP) to investigate its targeting and anti-tumor effect on TNBC. Methods: We synthesized and purified TBZ-DPNA with one step, measured optical properties and photoluminescence (PL) spectra. We prepared nanodrug plCSA-NP by encapsulating TBZ-DPNA and PTX and conjugating them with peptide plCSA. We evaluated plCSA-NP targeting activity by examining AIEdots fluorescence signal on TNBC cell lines and subcutaneous and lung metastatic mouse model. We assessed PTX delivery effect by cytotoxicity assay on TNBC line and tumor growth of subcutaneous and lung metastatic mouse models. Results: PL spectra and TEM imaging results showed plCSA-NP had maximum emission feature at 718 nm and nearly monodispersed nanosphere with an average diameter of 70 nm. In vitro studies showed plCSA-NPs had high affinity and cytotoxicity with TNBC cell lines. In vivo subcutaneous and lung metastasis mouse studies showed plCSA-NPs accumulated on TNBC tumor tissue, and significantly prevented TNBC subcutaneous and lung metastasis tumor growth. Conclusion: In conclusion, we provide solid evidence for chondroitin sulfate targeting peptide plCSA guided nanodrug, exhibit good targeting efficiency and therapeutic effect against TNBC primary and lung metastatic tumor growth.


Asunto(s)
Neoplasias Pulmonares , Nanosferas , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Sulfatos de Condroitina , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/farmacología , Modelos Animales de Enfermedad , Pulmón
19.
ACS Nano ; 16(3): 4162-4174, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35230081

RESUMEN

Tumor hypoxia seriously impairs the therapeutic outcomes of type II photodynamic therapy (PDT), which is highly dependent upon tissue oxygen concentration. Herein, a facile strategy of acceptor planarization and donor rotation is proposed to design type I photosensitizers (PSs) and photothermal reagents. Acceptor planarization can not only enforce intramolecular charge transfer to redshift NIR absorption but also transfer the type of PSs from type II to type I photochemical pathways. Donor rotation optimizes photothermal conversion efficiency (PCE). Accordingly, three 3,6-divinyl-substituted diketopyrrolopyrrole (DPP) derivatives, 2TPAVDPP, TPATPEVDPP, and 2TPEVDPP, with different number of rotors were prepared. Experimental results showed that three compounds were excellent type I PSs, and the corresponding 2TPEVDPP nanoparticles (NPs) with the most rotors possessed the highest PCE. The photophysical properties of 2TPEVDPP NPs are particularly suitable for in vivo NIR fluorescence imaging-guided synergistic PDT/PTT therapy. The proposed strategy is helpful for exploiting type I phototherapeutic reagents with high efficacy for synergistic PDT and PTT.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Triazenos
20.
J Mater Chem B ; 10(22): 4254-4260, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583194

RESUMEN

Butyrylcholinesterase (BChE) is an essential human biomarker which is related to liver and neurodegenerative diseases. It is of great significance to develop a fluorescent probe that can image BChE in vitro and in vivo. Unfortunately, most fluorescent probes that are based on a single change in fluorescence intensity are susceptible to environmental interference. Therefore, we reported an easily available ratiometric fluorescent probe, TB-BChE, with aggregation-induced emission (AIE) characteristics for ratiometric imaging of BChE. TB-BChE demonstrated excellent sensitivity (LOD = 39.24 ng mL-1) and specificity for BChE. Moreover, we have successfully studied the ratiometric imaging of TB-BChE to BChE in a nonalcoholic fatty liver disease model. These results indicated that TB-BChE is expected to become a powerful analysis tool for butyrylcholinesterase research in basic medicine and clinical applications.


Asunto(s)
Butirilcolinesterasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Diagnóstico por Imagen , Colorantes Fluorescentes , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda