Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
Cell ; 185(23): 4298-4316.e21, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323317

RESUMEN

After ingestion of toxin-contaminated food, the brain initiates a series of defensive responses (e.g., nausea, retching, and vomiting). How the brain detects ingested toxin and coordinates diverse defensive responses remains poorly understood. Here, we developed a mouse-based paradigm to study defensive responses induced by bacterial toxins. Using this paradigm, we identified a set of molecularly defined gut-to-brain and brain circuits that jointly mediate toxin-induced defensive responses. The gut-to-brain circuit consists of a subset of Htr3a+ vagal sensory neurons that transmit toxin-related signals from intestinal enterochromaffin cells to Tac1+ neurons in the dorsal vagal complex (DVC). Tac1+ DVC neurons drive retching-like behavior and conditioned flavor avoidance via divergent projections to the rostral ventral respiratory group and lateral parabrachial nucleus, respectively. Manipulating these circuits also interferes with defensive responses induced by the chemotherapeutic drug doxorubicin. These results suggest that food poisoning and chemotherapy recruit similar circuit modules to initiate defensive responses.


Asunto(s)
Eje Cerebro-Intestino , Núcleos Parabraquiales , Nervio Vago , Animales , Ratones , Neuronas/fisiología , Neuronas Aferentes/fisiología , Nervio Vago/fisiología
2.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242577

RESUMEN

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Citocinas/metabolismo , Femenino , Haplorrinos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Carga Viral , Replicación Viral
3.
Cell ; 175(2): 387-399.e17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270043

RESUMEN

HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in ∼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Adulto , Linfocitos B/inmunología , Línea Celular , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/fisiopatología , VIH-1/patogenicidad , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Masculino , Persona de Mediana Edad
4.
Nat Immunol ; 24(4): 567-569, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922648
5.
Mol Cell ; 82(11): 2050-2068.e6, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447081

RESUMEN

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
6.
Nature ; 594(7864): 553-559, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33971664

RESUMEN

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Resfriado Común/prevención & control , Reacciones Cruzadas/inmunología , Pandemias , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , COVID-19/epidemiología , Vacunas contra la COVID-19/inmunología , Resfriado Común/inmunología , Resfriado Común/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca/inmunología , Masculino , Modelos Moleculares , Nanopartículas/química , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Tráquea , Vacunación
7.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900807

RESUMEN

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Fragmentos Fc de Inmunoglobulinas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , SARS-CoV-2/inmunología , Ratones , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Humanos , Femenino , Dominios Proteicos/inmunología , Carga Viral , Pulmón/virología , Pulmón/inmunología , Pulmón/patología
8.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509464

RESUMEN

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Sitios de Carácter Cuantitativo , Genómica , Peso Corporal/genética , Fenotipo , Polimorfismo de Nucleótido Simple , China
9.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982480

RESUMEN

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Asunto(s)
Progresión de la Enfermedad , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Proteínas Proto-Oncogénicas c-myc , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Ratones , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Línea Celular Tumoral , Fosfofructoquinasa-1 Tipo C/metabolismo , Fosfofructoquinasa-1 Tipo C/genética , Proliferación Celular , Pronóstico , Femenino , Masculino , Ensayos Antitumor por Modelo de Xenoinjerto , Biomarcadores de Tumor/metabolismo
10.
Annu Rev Med ; 73: 1-16, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34428080

RESUMEN

Prophylactic and therapeutic drugs are urgently needed to combat coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over the past year, SARS-CoV-2 neutralizing antibodies have been developed for preventive or therapeutic uses. While neutralizing antibodies target the spike protein, their neutralization potency and breadth vary according to recognition epitopes. Several potent SARS-CoV-2 antibodies have shown degrees of success in preclinical or clinical trials, and the US Food and Drug Administration has issued emergency use authorization for two neutralizing antibody cocktails.Nevertheless, antibody therapy for SARS-CoV-2 still faces potential challenges, including emerging viral variants of concern that have antibody-escape mutations and the potential for antibody-mediated enhancement of infection or inflammation. This review summarizes representative SARS-CoV-2 neutralizing antibodies that have been reported and discusses prospects and challenges for the development of the next generation of COVID-19 preventive or therapeutic antibodies.


Asunto(s)
COVID-19 , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
11.
Ann Rheum Dis ; 83(1): 121-132, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37666645

RESUMEN

OBJECTIVES: To provide an overview and in-depth analysis of temporal trends in prevalence of musculoskeletal (MSK) disorders in women of childbearing age (WCBA) at global, regional and national levels over the last 30 years, with a special focus on their associations with age, period and birth cohort. METHODS: Estimates and 95% uncertainty intervals (UIs) for MSK disorders prevalence in WCBA were extracted from the Global Burden of Diseases, Injuries and Risk Factors Study 2019. An age-period-cohort model was adopted to estimate the overall annual percentage change of prevalence (net drift, % per year), annual percentage change of prevalence within each age group (local drift, % per year), fitted longitudinal age-specific rates adjusted for period deviations (age effects) and period/cohort relative risks (period/cohort effects) from 1990 to 2019. RESULTS: In 2019, the global number of MSK disorders prevalence in WCBA was 354.57 million (95% UI: 322.64 to 387.68). Fifty countries had at least one million prevalence, with India, China, the USA, Indonesia and Brazil being the highest accounting for 51.03% of global prevalence. From 1990 to 2019, a global net drift of MSK disorders prevalence in WCBA was -0.06% (95% CI: -0.07% to -0.05%) per year, ranging from -0.09% (95% CI: -0.10% to -0.07%) in low-middle sociodemographic index (SDI) region to 0.10% (95% CI: 0.08% to 0.12%) in high-middle SDI region, with 138 countries presenting increasing trends, 24 presenting decreasing trends and 42 presenting relatively flat trends. As reflected by local drift, higher SDI regions had more age groups showing rising prevalence whereas lower SDI regions had more declining prevalence. Globally, an increasing occurrence of MSK disorders prevalence in WCBA beyond adolescent and towards the adult stage has been prominent. Age effects illustrated similar patterns across different SDI regions, with risk increasing with age. High SDI region showed generally lower period risks over time, whereas others showed more unfavourable period risks. High, high-middle and middle SDI regions presented unfavourable prevalence deteriorations, whereas others presented favourable prevalence improvements in successively birth cohorts. CONCLUSIONS: Although a favourable overall temporal trend (net drift) of MSK disorders prevalence in WCBA was observed over the last 30 years globally, there were 138 countries showing unfavourable rising trends, coupled with deteriorations in period/cohort risks in many countries, collectively raising concerns about timely realisation of the Targets of Sustainable Development Goal. Improvements in the MSK disorders-related prevention, management and treatment programmes in WCBA could decline the relative risk for successively younger birth cohorts and for all age groups over period progressing.


Asunto(s)
Carga Global de Enfermedades , Enfermedades Musculoesqueléticas , Adulto , Adolescente , Humanos , Femenino , Prevalencia , Factores de Riesgo , Estudios de Cohortes , Enfermedades Musculoesqueléticas/epidemiología , Salud Global , Años de Vida Ajustados por Calidad de Vida , Incidencia
12.
J Med Virol ; 96(1): e29328, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38146903

RESUMEN

The nasopharynx is the initial site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and neutrophils play a critical role in preventing viral transmission into the lower airways or lungs during the early phases of infection. However, neutrophil dynamics, functional signatures, and predictive roles in the nasopharynx of coronavirus disease 2019 (COVID-19) patients have not yet been elucidated. In this study, we carried out RNA sequencing of nasopharyngeal swabs from a cohort of COVID-19 patients with mild, moderate, severe outcomes and healthy donors as controls. Over 32.7% of the differentially expressed genes associated with COVID-19 severity were neutrophil-related, including those involved in migration, neutrophil extracellular traps formation, and inflammasome activation. Multicohort single-cell RNA sequencing analysis further confirmed these findings and identified a population of neutrophils expressing Vacuolar-type ATPase (V-ATPase) and the chemokine receptor CXCR4 in the nasopharynx. This population of neutrophils preferentially expressed pro-inflammatory genes relevant to phagosomal maturation as well as local reactive oxygen species and reactive nitrogen species production in the nasopharynx of patients with severe outcomes. A four-gene panel defined as a neutrophil signature associated with COVID-19 progression (NSAP) was identified as an early diagnostic predictor of severe COVID-19, which potentially distinguished severe patients from mild cases with influenza, respiratory syncytial virus, dengue virus, or hepatitis B virus infection. NSAP is mainly expressed on CXCR4high neutrophils and exhibits a significant association with the cell fraction of this neutrophil population. This study highlights novel potential therapeutic targets or diagnostic tools for predicting patients at a higher risk of severe outcomes.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Neutrófilos , Nasofaringe , Progresión de la Enfermedad , Adenosina Trifosfatasas
13.
Epidemiology ; 35(1): 51-59, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756290

RESUMEN

BACKGROUND: Research has demonstrated the negative impact of racism on health, yet the measurement of racial sentiment remains challenging. This article provides practical guidance on using social media data for measuring public sentiment. METHODS: We describe the main steps of such research, including data collection, data cleaning, binary sentiment analysis, and visualization of findings. We randomly sampled 55,844,310 publicly available tweets from 1 January 2011 to 31 December 2021 using Twitter's Application Programming Interface. We restricted analyses to US tweets in English using one or more 90 race-related keywords. We used a Support Vector Machine, a supervised machine learning model, for sentiment analysis. RESULTS: The proportion of tweets referencing racially minoritized groups that were negative increased at the county, state, and national levels, with a 16.5% increase at the national level from 2011 to 2021. Tweets referencing Black and Middle Eastern people consistently had the highest proportion of negative sentiment compared with all other groups. Stratifying temporal trends by racial and ethnic groups revealed unique patterns reflecting historical events specific to each group, such as the killing of George Floyd regarding sentiment of posts referencing Black people, discussions of the border crisis near the 2018 midterm elections and anti-Latinx sentiment, and the emergence of COVID-19 and anti-Asian sentiment. CONCLUSIONS: This study demonstrates the utility of social media data as a quantitative means to measure racial sentiment over time and place. This approach can be extended to a range of public health topics to investigate how changes in social and cultural norms impact behaviors and policy.A supplemental digital video is available at http://links.lww.com/EDE/C91.


Asunto(s)
COVID-19 , Medios de Comunicación Sociales , Humanos , Estados Unidos , COVID-19/epidemiología , Grupos Raciales , Salud Pública , Etnicidad , Actitud
14.
Opt Lett ; 49(11): 3102-3105, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824338

RESUMEN

In this Letter, a novel, to the best of our knowledge, vertical directional coupling waveguide grating (VDCWG) architecture is proposed to increase the length of waveguide grating antennas for large aperture on-chip optical phased arrays (OPAs). In this new architecture, the grating emission strength is engineered by the vertical directional coupler, which provides additional degrees of design freedom. Theoretical analysis and numerical simulation show that the VDCWG can adjust the grating strength in the range of more than two orders of magnitude, corresponding to an effective grating length more than a centimeter. For proof-of-concept, a VDCWG antenna with a length of 1.5 mm is experimentally demonstrated. The grating strength is measured to be 0.17 mm-1, and the far-field divergence angle is 0.061°. A 16-channel OPA is also developed based on the proposed VDCWG, which proves the potential of the new architecture for large aperture OPAs.

15.
Cell Mol Neurobiol ; 44(1): 49, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836960

RESUMEN

Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.


Asunto(s)
Isquemia Encefálica , Hipotermia Inducida , Proteómica , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/orina , Proteómica/métodos , Masculino , Hipotermia Inducida/métodos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/orina , Proteoma/metabolismo , Ratas , Hipocampo/metabolismo
16.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38270082

RESUMEN

T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models: 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Radioisótopos de Yodo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Distribución Tisular
17.
Environ Sci Technol ; 58(6): 2912-2921, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252977

RESUMEN

Currently, atmospheric sulfate aerosols cannot be predicted reliably by numerical models because the pathways and kinetics of sulfate formation are unclear. Here, we systematically investigated the synergetic catalyzing role of transition-metal ions (TMIs, Fe3+/Mn2+) in the oxidation of SO2 by O2 on aerosols using chamber experiments. Our results showed that the synergetic effect of TMIs is critically dependent on aerosol pH due to the solubility of Fe(III) species sensitive to the aqueous phase acidity, which is effective only under pH < 3 conditions. The sulfate formation rate on aerosols is 2 orders of magnitude larger than that in bulk solution and increases significantly on smaller aerosols, suggesting that such a synergetic-catalyzed oxidation occurs on the aerosol surface. The kinetic reaction rate can be described as R = k*[H+]-2.95[Mn(II)][Fe(III)][S(IV)] (pH ≤ 3.0). We found that TMI-synergetic-catalyzed oxidation is the dominant pathway of sulfate formation in Beijing when haze particles are very acidic, while heterogeneous oxidation of SO2 by NO2 is the most important pathway when haze particles are weakly acidic. Our work for the first time clarified the role and kinetics of TMI-synergetic-catalyzed oxidation of SO2 by O2 in haze periods, which can be parameterized into models for future studies of sulfate formation.


Asunto(s)
Contaminantes Atmosféricos , Beijing , Sulfatos/análisis , Compuestos Férricos , Óxidos de Azufre , Aerosoles , Catálisis , Material Particulado , China
18.
BMC Infect Dis ; 24(1): 103, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238719

RESUMEN

BACKGROUND: Detecting pathogens in pediatric central nervous system infection (CNSI) is still a major challenge in medicine. In addition to conventional diagnostic patterns, metagenomic next-generation sequencing (mNGS) shows great potential in pathogen detection. Therefore, we systematically evaluated the diagnostic performance of mNGS in cerebrospinal fluid (CSF) in pediatric patients with CNSI. METHODS: Related literature was searched in the Web of Science, PubMed, Embase, and Cochrane Library. We screened the literature and extracted the data according to the selection criteria. The quality of included studies was assessed by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and the certainty of the evidence was measured by the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) score system. Then, the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odd's ratio (DOR), and area under the curve (AUC) of the summary receiver operating characteristic curve (sROC) were estimated in Stata Software and MetaDisc. Subgroup analyses were performed to investigate the potential factors that influence the diagnostic performance. RESULTS: A total of 10 studies were included in the meta-analysis. The combined sensitivity was 0.68 (95% confidence interval [CI]: 0.59 to 0.76, I2 = 66.77%, p < 0.001), and the combined specificity was 0.89 (95% CI: 0.80 to 0.95, I2 = 83.37%, p < 0.001). The AUC of sROC was 0.85 (95% CI, 0.81 to 0.87). The quality level of evidence elevated by the GRADE score system was low. CONCLUSIONS: Current evidence shows that mNGS presents a good diagnostic performance in pediatric CNSI. Due to the limited quality and quantity of the included studies, more high-quality studies are needed to verify the above conclusion.


Asunto(s)
Infecciones del Sistema Nervioso Central , Humanos , Niño , Curva ROC , Infecciones del Sistema Nervioso Central/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento
19.
Bioorg Med Chem ; 102: 117657, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428068

RESUMEN

The epidermal growth factor receptor (EGFR) has received significant attention as a potential target for glioblastoma (GBM) therapeutics in the past two decades. However, although cetuximab, an antibody that specifically targets EGFR, exhibits a high affinity for EGFR, it has not yet been applied in the treatment of GBM. Antibody-drug conjugates (ADCs) utilize tumor-targeting antibodies for the selective delivery of cytotoxic drugs, resulting in improved efficacy compared to conventional chemotherapy drugs. However, the effectiveness of cetuximab as a targeted antibody for ADCs in the treatment of GBM remains uncertain. In this study, we synthesized AGCM-22, an EGFR-targeted ADC derived from cetuximab, by conjugating it with the tubulin inhibitor monomethyl auristatin E (MMAE) using our Valine-Alanine Cathepsin B cleavable linker. In vitro experiments demonstrated that AGCM-22 effectively inhibited GBM cell proliferation through increased levels of apoptosis and autophagy-related cell death, whereas cetuximab alone had no anti-GBM effects. Additionally, both mouse and human orthotopic tumor models exhibited the selective tumor-targeting efficacy of AGCM-22, along with favorable metabolic properties and superior anti-GBM activity compared to temozolomide (TMZ). In summary, this study presents a novel ADC for GBM therapy that utilizes cetuximab as the tumor-targeting antibody, resulting in effective delivery of the cytotoxic drug payload.


Asunto(s)
Antineoplásicos , Glioblastoma , Inmunoconjugados , Humanos , Animales , Ratones , Cetuximab/farmacología , Preparaciones Farmacéuticas , Glioblastoma/metabolismo , Anticuerpos , Antineoplásicos/uso terapéutico , Receptores ErbB , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Environ Res ; 241: 117630, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37993050

RESUMEN

With the rise of the concept of carbon neutrality, the current wastewater treatment process of industrial organic wastewater is moving towards the goal of energy conservation and carbon emission reduction. The advantages of anaerobic digestion (AD) processes in industrial organic wastewater treatment for bio-energy recovery, which is in line with the concept of carbon neutrality. This study summarized the significance and advantages of the state-of-the-art AD processes were reviewed in detail. The application of expanded granular sludge bed (EGSB) reactors and anaerobic membrane bioreactor (AnMBR) were particularly introduced for the effective treatment of industrial organic wastewater treatment due to its remarkable prospect of engineering application for the high-strength wastewater. This study also looks forward to the optimization of the AD processes through the enhancement strategies of micro-aeration pretreatment, acidic-alkaline pretreatment, co-digestion, and biochar addition to improve the stability of the AD system and energy recovery from of industrial organic wastewater. The integration of anaerobic ammonia oxidation (Anammox) with the AD processes for the post-treatment of nitrogenous pollutants for the industrial organic wastewater is also introduced as a feasible carbon-neutral process. The combination of AnMBR and Anammox is highly recommended as a promising carbon-neutral process for the removal of both organic and inorganic pollutants from the industrial organic wastewater for future perspective. It is also suggested that the AD processes combined with biological hydrogen production, microalgae culture, bioelectrochemical technology and other bio-processes are suitable for the low-carbon treatment of industrial organic wastewater with the concept of carbon neutrality in future.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Carbono , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda