Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Cardiovasc Disord ; 24(1): 76, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281937

RESUMEN

BACKGROUND: The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration. METHODS: To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1ß/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB). RESULTS: Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1ß) signaling pathway. CONCLUSIONS: These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1ß pathway in macrophages. TRIAL REGISTRATION: Date of registration 09/04/2021 (number: ChiCTR2100045256).


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Ubiquinona , Animales , Humanos , Ratones , Cromatografía Liquida , Modelos Animales de Enfermedad , Fibrosis , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Espectrometría de Masas en Tándem , Ubiquinona/análogos & derivados , Ubiquinona/sangre , Remodelación Ventricular
2.
Nat Commun ; 14(1): 4672, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537185

RESUMEN

The genome-wide DNA methylation profile, or DNA methylome, is a critical component of the overall epigenomic landscape that modulates gene activities and cell fate. Single-cell DNA methylomic studies offer unprecedented resolution for detecting and profiling cell subsets based on methylomic features. However, existing single-cell methylomic technologies are based on use of tubes or well plates and these platforms are not easily scalable for handling a large number of single cells. Here we demonstrate a droplet-based microfluidic technology, Drop-BS, to construct single-cell bisulfite sequencing libraries for DNA methylome profiling. Drop-BS takes advantage of the ultrahigh throughput offered by droplet microfluidics to prepare bisulfite sequencing libraries of up to 10,000 single cells within 2 days. We apply the technology to profile mixed cell lines, mouse and human brain tissues to reveal cell type heterogeneity. Drop-BS offers a promising solution for single-cell methylomic studies requiring examination of a large cell population.


Asunto(s)
Metilación de ADN , Epigenoma , Humanos , Animales , Ratones , Análisis de Secuencia de ADN , Sulfitos , Secuenciación de Nucleótidos de Alto Rendimiento
3.
bioRxiv ; 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37293095

RESUMEN

Genome-wide DNA methylation profile, or DNA methylome, is a critical component of the overall epigenomic landscape that modulates gene activities and cell fate. Single-cell DNA methylomic studies offer unprecedented resolution for detecting and profiling cell subsets based on methylomic features. However, existing single-cell methylomic technologies are all based on use of tubes or well plates and these platforms are not easily scalable for handling a large number of single cells. Here we demonstrate a droplet-based microfluidic technology, Drop-BS, to construct single-cell bisulfite sequencing libraries for DNA methylome profiling. Drop-BS takes advantage of the ultrahigh throughput offered by droplet microfluidics to prepare bisulfite sequencing libraries of up to 10,000 single cells within 2 d. We applied the technology to profile mixed cell lines, mouse and human brain tissues to reveal cell type heterogeneity. Drop-BS will pave the way for single-cell methylomic studies requiring examination of a large cell population.

4.
Sci Transl Med ; 13(576)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441428

RESUMEN

Inflammation contributes to nearly 4 million global premature births annually. Here, we used a mouse model of intrauterine inflammation to test clinically used formulations, as well as engineered nanoformulations, for the prevention of preterm birth (PTB). We observed that neither systemic 17a-hydroxyprogesterone caproate (Makena) nor vaginal progesterone gel (Crinone) was sufficient to prevent inflammation-induced PTB, consistent with recent clinical trial failures. However, we found that vaginal delivery of mucoinert nanosuspensions of histone deacetylase (HDAC) inhibitors, in some cases with the addition of progesterone, prevented PTB and resulted in delivery of live pups exhibiting neurotypical development. In human myometrial cells in vitro, the P4/HDAC inhibitor combination both inhibited cell contractility and promoted the anti-inflammatory action of P4 by increasing progesterone receptor B stability. Here, we demonstrate the use of vaginally delivered drugs to prevent intrauterine inflammation-induced PTB resulting in the birth of live offspring in a preclinical animal model.


Asunto(s)
Preparaciones Farmacéuticas , Nacimiento Prematuro , Caproato de 17 alfa-Hidroxiprogesterona , Animales , Femenino , Nanomedicina , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Nacimiento Prematuro/prevención & control , Progesterona , Progestinas
5.
Transl Cancer Res ; 9(11): 7299-7309, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35117331

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a common malignant bone tumor in children and adolescents. DNA methylation plays a crucial role in the prognosis prediction of cancer. Identification of novel DNA methylation sites biomarkers could be beneficial for the prognosis of OS patients. In this study, we aim to find an efficient methylated site model for predicting survival in OS. METHODS: DNA methylation data were downloaded from the Cancer Genome Atlas database (TCGA) and the GEO database. Cox proportional hazard regression and random survival forest algorithm (RSFVH) were applied to identify DNA methylated site signature in the samples randomly assigned to the training subset and the other samples as the test subset. By randomizing 71 clinical samples into two individual groups and a series of statistical analyses between the two groups, a DNA methylation signature is verified. RESULTS: This signature comprises four methylation sites (cg04533248, cg12401425, cg13997435, and cg15075357) associated with the patient training group from the univariate Cox proportional hazards regression analysis, RSFVH, and multivariate Cox regression analysis. Kaplan-Meier survival curves showed the OS patients in the high-risk group have a poor 5-year overall survival compared with the low-risk group, and this finding was identified in the test data set. A ROC analysis was performed in the current research. The results revealed that this signature was an independent predictor of patient survival by investigating the AUC of the four methylation sites signature in the training data set (AUC =0.861) and test data set, respectively (AUC =0.920). The nomogram described in the current study placed a great guiding value for predicting 1-, 2-, 3-year survival of the OS by combining age, gender, grade, and TNM stage as covariates with the RS of patients' methylation related signatures. CONCLUSIONS: Our study proved that this signature might be a powerful prognostic tool for survival rate evaluation and guide tailored therapy for OS patients.

6.
Ther Clin Risk Manag ; 11: 1081-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26229479

RESUMEN

BACKGROUND: Our aim was to summarize the treatment of degloving injury involving multiple fingers using combined abdominal superficial fascial flap, dorsalis pedis flap, dorsal toe flap, and toe-web flap. PATIENTS AND METHODS: Each degloved finger was debrided under microscopic guidance and embedded in the superficial layer of the abdominal fascia. The abdominal skin was sutured to the skin on the back and side of the hand to promote circumferential healing. After removal, the only remaining injured region was on the flexor surface, and this was repaired by multiple dorsal toe flaps, toe-web flaps, and dorsalis pedis flaps to provide blood vessels and sensory nerves. All fingers had proper flap thickness 3-6 months after surgery, and required only lateral Z-plasty modification with web deepening and widening to narrow the fingers and extend their relative length. RESULTS: We completed flap-graft and finger narrowing for 25 fingers in eight patients. Abdominal skin flaps and dorsal toe flaps were grafted, and resulted in both firmness and softness, providing finger flexibility. The dorsal toe flap provided good blood circulation and sensory nerves, and was used to cover the finger-flexor surface to regain sensation and stability when holding objects. During the 1-8 years of follow-up, sensation on the finger-flexor side recovered to the S3-4 level, and patient satisfaction based on the Michigan Hand Outcomes Questionnaire was 4-5. Flap ulcers or bone/tendon necrosis were not observed. CONCLUSION: Treatment of degloving injury involving multiple fingers with combined abdominal superficial fascial flap, dorsalis pedis flap, dorsal toe flap, and toe-web flap was effective and reliable.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda