Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358943

RESUMEN

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

2.
Anal Chem ; 96(18): 7073-7081, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663374

RESUMEN

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Lincomicina , Mediciones Luminiscentes , Tetraciclina , Tetraciclina/análisis , Tetraciclina/química , Técnicas Biosensibles/métodos , Lincomicina/análisis , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Catálisis , Puntos Cuánticos/química , Compuestos de Cadmio/química , Aptámeros de Nucleótidos/química , Compuestos de Selenio/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Antibacterianos/análisis , Antibacterianos/química
3.
J Nanobiotechnology ; 22(1): 307, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825668

RESUMEN

Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.


Asunto(s)
Vesículas Extracelulares , Fibroblastos , Glutatión Transferasa , ARN Mensajero , Envejecimiento de la Piel , Cicatrización de Heridas , Animales , Ratones , Fibroblastos/metabolismo , Glutatión Transferasa/metabolismo , Vesículas Extracelulares/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Epidermis/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo , Piel/metabolismo , Masculino , Humanos , Células Epidérmicas/metabolismo , Células Cultivadas
4.
Plant Dis ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616400

RESUMEN

Amorphophallus muelleri is an Araceae plant with perennial tuber, widely used in food, pharmaceutical and chemical industry due to its richness in glucomannan. In April 2022, an outbreak of a target spot on A. muelleri plantlets was observed in a nursery in Ruili, Yunnan, China. The leafstalks of the diseased plantlets in the nursery turned brown and decayed (Fig.1 A-B), then gradually some water-soaked spots on the true leaves developed along the veins (Fig.1 A). Subquencely, the spots on the true leaves turned dark green to white-grayish in the center, which formed light to dark brown concentric rings with a target-like appearance surrounded by a yellow halo (Fig.1 C). When the temperature was 20-34℃ and the relatively humidity was 25-80%, dark-green to black sporodochia with white hypha appeared on the lower and upper leaf surfaces. Finally, 5-8% of the plants surveyed on 800 m2 of one-year-old plantlets in the nursery showed the symptoms and some plants with infected leafstalks would be death. Similar symptoms were also observed on about 10% of the transplanted plants surveyed on 12000 m2 (1.2 ha) of two-year-old plantlets in the field. Five diseased leaves from five distinct plantlets in the nursery were collected for pathogen isolation. Leaf pieces(5 x 5 mm) were cut from the edge of necrotic lesions, and surface-sterilized with 2.5% sodium hypochlorite for 1 min, 75% ethanol for 30 s, then rinsed 5 times by sterilized distilled water, finally put the leaf pieces on sterilized filter paper for 3-5 minutes to dry them and transferred onto potato dextrose agar (PDA) in petri dishes at 25℃ for three days. Five pure cultures identical to colony and conidial characteristics were isolated from five individual plants. The representative pure culture (M1) was grayish-white and circular colonies were 7.50 cm in diamter after 15 days at 25℃, with dark green concentric rings of sporodochia, the dorsal view of the colonies were yellowish. Conidia were aseptate, smooth, cylindrical, 5.00-6.25 (5.71) x 1.25-1.67 (1.63) µm (n = 20) rounded at both ends. A spore suspension (1 x 106 spores/ml) was prepared by harvesting spores from 15-day-old cultures grown in the dark at 25℃, then a thirty-ml of spore suspension was sprayed on the healthy leaves of 10 two-year-old plantlets. Thirty-ml of sterile water was sprayed on the healthy leaves of another 10 seedlings and used as the control. All seedlings were placed in a nursery at 20 to 34℃ and a relative humidity of 25 to 80%. Similar symptoms (Fig.1 D-F) to those observed in the nursery and field developed on all the 10 seedlings inoculated with M1 after two days, but not on the control leaves. The pathogenicity tests were repeated for three times. Fungal cultures reisolated from the infected leaves were identical to the original colonies and conidia, completing Koch's postulates. The internal transcribed spacer (ITS, primers ITS1 and ITS4) region of ribosomal DNA (OQ553785), calmodulin (cmdA, primers CAL-228F and CAL2Rd)(OQ559103), RNA polymerase II second largest subunit (rpb2, primers RPB2-5F2 and RPB2-7cR) (OQ559104) and ß-tubulin (tub2, primers Bt2a and Bt2b) (OQ559105) of M1 had 100%, 98.52%, 98.98% and 98.98% identity with the sequences of Paramyrothecium breviseta CBS544.75 (KU846289 for ITS, KU846262 for cmdA, KU846351 for rpb2, and KU846406 for tub2), respectively. In the phylogenic tree based on ITS, cmdA, rpb2 and tub2 gene sequences, the pure culture M1 clustered with P. breviseta CBS544.75, SDBR-CMU387, DRL4 and DRL3, which has been reported as the pathogen of leaf spot of Coffea arabica in China, C. canephora in China and Thailand (Wu et al. 2021; Withee et al. 2022). Molecular and morphological observations showed the pure culture M1 were P. breviseta (Withee et al. 2022), in addition the disease was named as target spot dueing to the typical target symptom on the leaves. To our knowledge, this is the first report of P. breviseta on A. muelleri from Yunnan, China, as well as worldwide. This disease can caused serious economic losses of A. muelleri dueing to that it can result 5-8% death of the plants in the nursery.

5.
Int Wound J ; 21(4): e14862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572823

RESUMEN

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Piel/metabolismo , Repitelización , Mucosa Bucal , Fibroblastos/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo
6.
Korean J Physiol Pharmacol ; 28(3): 285-294, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682176

RESUMEN

Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of Il6 significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the Il11 promoter region and contributes to the increased expression of Il11, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented Il11 expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.

7.
Korean J Physiol Pharmacol ; 27(2): 177-185, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815257

RESUMEN

The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.

8.
Acta Cardiol Sin ; 39(2): 343-352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911542

RESUMEN

Background: Circulating memory CD8+ T cells have been shown to be a crucial mediator of chronic inflammation. This study investigated whether the baseline proportion of circulating CD45RO+CD8+ T cells was associated with the coronary slow flow (CSF) phenomenon. Methods: A total of 160 consecutive patients [mean (standard deviation (SD)) age, 67.86 (9.55) years; 51.25% male] who were admitted to our hospital between August 2020 and October 2020 for chest pain and underwent coronary angiography with the absence of coronary stenosis were enrolled in this cross-sectional analysis. The patients' admission CD45RO+ CD8+ T cell plasma levels were measured using flow cytometry. Angiographic CSF was defined as thrombolysis in myocardial infarction (TIMI) flow of ≤ 2 without coronary stenosis, and non-CSF was defined as coronary arteries (< 50% stenosis) with TIMI 3 flow. Results: The incidence of angiographic CSF was 22.5%. Patients with angiographic CSF had higher levels of CD45RO+CD8+ T cells than those without CSF [56.18 (13.93) vs. 45.26 (16.45); p < 0.001]. After multivariable adjustment, the risk of incident CSF was 2.41 [95% confidence interval (CI) 1.46-3.97] per SD change in CD45RO+ CD8+ T cells. Further, coronary microvascular resistance was significantly higher in patients with CSF than in those without CSF. A positive linear relationship between CD45RO+CD8+ T cells and coronary microvascular resistance was observed. Conclusions: The proportion of circulating CD45RO+CD8+ T cells is an independent indicator of CSF. This observation may provide insights into the pathophysiological mechanism of CSF.

9.
Sensors (Basel) ; 22(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35271193

RESUMEN

Rolling bearings are the vital components of large electromechanical equipment, thus it is of great significance to develop intelligent fault diagnoses for them to improve equipment operation reliability. In this paper, a fault diagnosis method based on refined composite multiscale reverse dispersion entropy (RCMRDE) and random forest is developed. Firstly, rolling bearing vibration signals are adaptively decomposed by variational mode decomposition (VMD), and then the RCMRDE values of 25 scales are calculated for original signal and each decomposed component as the initial feature set. Secondly, based on the joint mutual information maximization (JMIM) algorithm, the top 15 sensitive features are selected as a new feature set and feed into random forest model to identify bearing health status. Finally, to verify the effectiveness and superiority of the presented method, actual data acquisition and analysis are performed on the bearing fault diagnosis experimental platform. These results indicate that the presented method can precisely diagnose bearing fault types and damage degree, and the average identification accuracy rate is 97.33%. Compared with the refine composite multiscale dispersion entropy (RCMDE) and multiscale dispersion entropy (MDE), the fault diagnosis accuracy is improved by 2.67% and 8.67%, respectively. Furthermore, compared with the RCMRDE method without VMD decomposition, the fault diagnosis accuracy is improved by 3.67%. Research results prove that a better feature extraction technique is proposed, which can effectively overcome the deficiency of existing entropy and significantly enhance the ability of fault identification.


Asunto(s)
Algoritmos , Vibración , Entropía , Reproducibilidad de los Resultados
10.
Anal Chem ; 92(9): 6734-6740, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32285667

RESUMEN

A new photoelectrochemical (PEC) "signal-on" sensing platform based on photoactive material Bi2O3-ZnO and CdS quantum dots (QDs) sensitizer was fabricated for ultrasensitive determination of thrombin by constructing supersandwich nanowires. The CdS/ZnO/Bi2O3 sensitization structure with excellent energy level arrangement remarkably improved photoelectric conversion efficiency because of the efficient separation of the electron-hole. Moreover, the DNA supersandwich nanowire is ingeniously synthesized in one step by simple dislocation hybridization, which could carry a large amount of sensitized material CdS QDs. More importantly, with Exonuclease III (Exo III)-assisted multiple amplification, the proposed "signal-on" platform demonstrated a detection range of 10 fM to 1 µM with the detection limit of 1.41 fM for thrombin. Impressively, the PEC platform can successfully detect human serum samples with good accuracy. Above all, the CdS/ZnO/Bi2O3 sensitization photoelectric biosensing platform by using DNA nanowire in combination with Exo III-multiple amplification opens new sensitized amplification paths for supersensitive biosensing and bioanalysis.


Asunto(s)
Compuestos de Cadmio/química , ADN/química , Técnicas Electroquímicas , Nanocables/química , Puntos Cuánticos/química , Sulfuros/química , Trombina/análisis , Humanos , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
11.
Dev Neurosci ; 42(2-4): 83-93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33130681

RESUMEN

OBJECTIVE: Recent reports have corroborated that micro-RNAs (miRs) are related to the pathological changes of cerebral ischemia-reperfusion (CIR) induced injury. This work aimed to unearth the role and potential mechanism of miR-325-3p in regulating neuronal survival in CIR injury. METHODS: To conduct this investigation, we established an in vitro model of CIR injury by subjecting neurons to oxygen-glucose deprivation and reoxygenation (OGD/R). Gain and loss of function of miR-325-3p and receptor-interacting serine-threonine kinase 3 (RIP3) in neurons were performed to observe its effect on cell apoptosis and the release of lactate dehydrogenase. The levels of miR-325-3p and RIP3 in neurons were detected by qRT-PCR. Western blot was employed to inspect the levels of caspase3, Bax, and Bcl-2, as well as p38 and JNK phosphorylation. The relationship between miR-325-3p and RIP3 was detected by TargetScan and validated by dual-luciferase reporter assay. RESULTS: Firstly, miR-325-3p expression was obviously downregulated while RIP3 expression was upregulated in neurons following OGD/R treatment. Overexpressed miR-325-3p or downexpressed RIP3 ameliorated OGD/R-induced neuronal injury. Besides, RIP3 was a direct target mRNA of miR-325-3p. Additionally, Western blot revealed the mitogen-activated protein kinase (MAPK) pathway was involved in the regulation of miR-325-3p on OGD/R-induced neuronal injury. Furthermore, miR-325-3p was verified to hinder OGD/R-induced neuronal injury through downregulating RIP3. CONCLUSION: This study demonstrated that miR-325-3p targets RIP3 to inactivate the MAPK pathway, thereby protecting neurons against OGD/R-induced injury.


Asunto(s)
Isquemia Encefálica/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/patología , Células Cultivadas , Glucosa/deficiencia , Neuronas/patología , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley
12.
Analyst ; 145(16): 5524-5531, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32608406

RESUMEN

A novel versatile dendritical amplification photoelectric (PEC) biosensing platform using Bi2S3 nanorods and perylene-based polymer (PTC-NH2) as double signal probes is proposed for the detection of trace target DNA. Bi2S3 nanorods as efficient photoactive materials were firstly immobilized on the Au nanoparticle (NP) modified electrode and generated a high PEC signal. Exonuclease III (Exo III)-assisted target recycling generated a large number of DNA product chains (PC), PC hybridized with hairpin DNA (H1) on AuNPs/Bi2S3/ITO, and then triggered rolling circle amplification (RCA) and the hybridization chain reaction (HCR) to form the dendritic structure with abundant DNA duplexes. After large amounts of Mn(iii) meso-tetra(N-methyi-4-pyridyl)porphine pentachloride (MnPP) were embedded in the dendritic structure, they efficiently quenched the PEC signal, realizing the "signal off" detection of the target. In addition, the dendritic structure was also formed on AuNPs/ITO, and large amounts of PTC-NH2 molecules as the PEC probe were inserted into the dendritic structure, achieving a highly enhanced PEC current for the "signal on" detection of the target. This biosensing platform with double signals exhibits good analytical performance with wide linear ranges. This study develops a new DNA nanostructure-amplified versatile PEC sensing platform for bioanalysis, with promising potential for application in gene therapy and clinical analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanotubos , Perileno , ADN/genética , Técnicas Electroquímicas , Oro , Límite de Detección , Polímeros
13.
Mikrochim Acta ; 187(11): 625, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33095314

RESUMEN

A new DNA hyperbranched hybridization chain reaction (HB-HCR)-amplified fluorescence platform combined with DNA walker was developed for versatile detection of Cu2+, adenosine triphosphate (ATP), and drug delivery to cancer cells. A novel click chemistry reaction-triggered DNA walking machine on magnetic beads (MBs) is introduced for the first time to convert target Cu2+ to lots of DNA S3 products. With the help of DNA S3 and H1 on the amino functionalized SiO2 microsphere, HB-HCR between super hairpin DNA (SH DNA), H3-DNA, and LT-DNA was initiated to assemble a novel dendritic DNA structure with numerous fluorescent Cy5, achieving enormously amplified signal for ultrasensitive detection of Cu2+. Furthermore, this contains large amounts of double-stranded DNA with plentiful GC bases, which can provide many loading sites for chemotherapeutic drug doxorubicin (Dox). The specific binding of ATP to aptamer in the dendritic DNA structure allows for release of Dox, leading to activation of Dox fluorescence for ATP assay. More importantly, this dendritic DNA nanostructure-loaded Dox enters into tumor cells by endocytosis, and then interacts with endogenous ATP, releasing Dox for efficient treatment of cancer cells. Taking advantages of these multiple amplification of HB-HCR on SiO2 microsphere, click chemistry reaction, DNA walking, and release of Dox, this method enables ultrasensitive detection of Cu2+ and ATP as low as 0.1 fM and 1.0 aM, respectively, which can be widely used for accurate detection of biomolecules in clinical diagnosis and biomedical applications. This dendritic DNA nanostructure provided an effective tool for designing smart nanodevices. Graphical abstract.


Asunto(s)
Antineoplásicos/administración & dosificación , ADN/química , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Técnicas de Amplificación de Ácido Nucleico/métodos , Antineoplásicos/química , Química Clic , Doxorrubicina/química , Humanos , Células MCF-7 , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo
14.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230874

RESUMEN

Prognostics and health management technology (PHM), a measure to ensure the reliability and safety of the operation of industrial machinery, has attracted attention and application adequately. However, how to use the monitored information to evaluate the degradation of rolling bearings is a significant issue for its predictive maintenance and autonomic logistics. This work presents a reliable health prognosis approach to estimate the health indicator (HI) and remaining useful life (RUL) of rolling bearings. Firstly, to accurately capture the degradation process, a novel health index (HI) is constructed based on correlation kurtosis for different iteration periods and a Gaussian process latency variable model (GPLVM). Then, a multiple convolutional long short-term memory (MCLSTM) network is proposed to predict HI values and RUL values. Finally, we perform experimental datasets of rolling bearings, demonstrating that the presented method surpasses other state-of-the-art prognosis approaches. The results also confirm the feasibility of the presented method in industrial machinery.

15.
Sensors (Basel) ; 20(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438608

RESUMEN

Milling is a main processing mode of the modern manufacturing industry, which seriously affects the quality and precision of the machined workpiece. However, it is difficult to monitor the tool wear condition in the continuous cutting process, especially under a variable speed condition. The existing tool wear condition monitoring methods only carry out analysis with a constant engine speed. Different from the general monitoring methods, this paper put forward a milling cutter wear condition monitoring method based on order analysis (OA) and stacked sparse autoencoder (SSAE). The methodology in the research include signals feature extraction and tool wear state monitoring and were designed to analyze the three-phase spindle current signals instead of the traditional force signals and vibration signals. The variable speed signals were transformed into angle domain stationary signals by order analysis, and the SSAE neural network was used to monitor the tool wear state. The proposed method was verified on the laboratory signals and the results showed a better performance than the other methods and a better applicability in actual industrial manufacturing.

16.
Anal Chem ; 91(21): 14117-14124, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31642671

RESUMEN

Glutathione (GSH) serves vital functions in biological systems and associates with various human diseases. In this work, a versatile electrochemiluminence (ECL) and a photoelectrochemical (PEC) "signal on" biosensing platform were developed for a sensitive assay of GSH by a Mn2+-powered DNAzyme amplification strategy combined with DNA-walker-triggered allosteric conversion. First, MnO2 nanosheets were reduced to Mn2+ by GSH; then, Mn2+ as a substitute target triggered DNAzyme-assisted cleavage-cycling amplification to generate numerous DNA output (s3). Meanwhile, the DNA molecular machine was introduced to bridge signal probes for versatile biosensing, which included hairpin DNA as a track and an arm as a walker. The presence of DNA output (s3) activated the swing arm to hybridize with hairpin DNA and then cut it by Nt.BbvCI, which initiated autonomous walking of the arm for forming a large number of streptavidin (SA) aptamers. Thus, a large number of CdS:Mn-SA tags as versatile signal probes was linked to the electrode by specific SA-aptamer binding, generating highly enhanced ECL and PEC signals for sensitive detection of the target. The present biosensing system take advantage of metal ion-based DNAzyme amplification, a DNA walker machine, multi-signals of QDs, and specificity of aptamers, which can provide a universal and efficient biosensing method for detecting various targets. The designed strategy demonstrated good performance for a GSH assay in human serum samples, showing more promising applications than other reported methods.


Asunto(s)
Técnicas Biosensibles , ADN/química , Técnicas Electroquímicas , Glutatión/sangre , Mediciones Luminiscentes , Compuestos de Manganeso/química , Regulación Alostérica , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , ADN/metabolismo , ADN Catalítico/química , ADN Catalítico/metabolismo , Glutatión/metabolismo , Humanos , Compuestos de Manganeso/metabolismo , Hibridación de Ácido Nucleico , Procesos Fotoquímicos
17.
Langmuir ; 35(10): 3805-3813, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30767500

RESUMEN

The core of aggregation-induced emitting (AIE) molecules was their aggregation behavior. It was, in essence, a self-assembly process driven by noncovalent interactions, which were governed not only by the chemical structures of the molecules but also by the conditions where the self-assemblies were formed. The self-assemblies of two AIE molecules, tetraphenylethene (TPE) derivatives carrying one valine attachment (TPE-Val) and two valine attachments (TPE-2Val), were studied. Both kinds of molecules self-assembled into supramolecular helical fibers with different handedness upon the addition of poor solvent to their solution. However, when deposited on air/water interface, both kinds of molecules formed aligned elementary helical fibers instead of supramolecular fibers. The lateral solvophobic effect exerted by water molecules caused a shift of the original noncovalent balance between molecules and solvent; thus, the supramolecular helical assemblies were unraveled into aligned helical elementary fibers. Similar elementary assemblies were formed on the surface of 3-aminopropyl triethoxysilane-modified mica, confirming the lateral solvophobic effect on the self-assemblies of the molecules.

18.
Sensors (Basel) ; 19(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744093

RESUMEN

Rotating stall limits the operating range and stability of the centrifugal compressor and has a significant impact on the lifetime of the impeller blade. This paper investigates the relationship between stall pressure wave and its induced non-synchronous blade vibration, which will be meaningful for stall resonance avoidance at the early design phase. A rotating disc under a time-space varying load condition is first modeled to understand the physics behind stall-induced vibration. Then, experimental work is conducted to verify the model and reveal the mechanism of stall cells evolution process within flow passage and how blade vibrates when suffering such aerodynamic load. The casing mounted pressure sensors are used to capture the low-frequency pressure wave. Strain gauges and tip timing sensors are utilized to monitor the blade vibration. Based on circumferentially distributed pressure sensors and stall parameters identification method, a five stall cells mode is found in this compressor test rig and successfully correlates with the blade non-synchronous vibration. Furthermore, with the help of tip timing measurement, all blades vibration is also evaluated under different operating mass flow rate. Analysis results verify that the proposed model can show the blade forced vibration under stall flow condition. The overall approach presented in this paper is also important for stall vibration and resonance free design with effective experimental verification.

19.
Biochem Biophys Res Commun ; 497(1): 233-240, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29427658

RESUMEN

Heart failure (HF) is the end stage of cardiovascular disease and is characterized by the loss of myocytes caused by cell death. Puerarin has been found to improve HF clinically, and animal study findings have confirmed its anti-cell-death properties. However, the underlying mechanisms remain unclear, especially with respect to the impact on ferroptosis, a newly defined mechanism of iron-dependent non-apoptotic cell death in HF. Here, ferroptosis-like cell death was observed in erastin- or isoprenaline (ISO)-treated H9c2 myocytes in vitro and in rats with aortic banding inducing HF, characterized by reduced cell viability with increased lipid peroxidation and labile iron pool. Interestingly, the increased iron overload and lipid peroxidation observed in either rats with HF or H9c2 cells incubated with ISO were significantly blocked by puerarin administration. These results provide compelling evidence that puerarin plays a role in inhibiting myocyte loss during HF, partly through ferroptosis mitigation, suggesting a new mechanism of puerarin as a potential therapy for HF.


Asunto(s)
Apoptosis/efectos de los fármacos , Presión Sanguínea , Insuficiencia Cardíaca/fisiopatología , Sobrecarga de Hierro/fisiopatología , Isoflavonas/administración & dosificación , Miocitos Cardíacos/metabolismo , Disfunción Ventricular/fisiopatología , Animales , Presión Sanguínea/efectos de los fármacos , Línea Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/tratamiento farmacológico , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/prevención & control , Masculino , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Vasodilatadores/administración & dosificación , Disfunción Ventricular/patología , Disfunción Ventricular/prevención & control
20.
Macromol Rapid Commun ; 39(24): e1800604, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30252976

RESUMEN

The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the synthesis of hyperbranched polymers. In this work, metal-free polycycloadditions of tris(3-phenylpropiolate)s (1) and tetraphenylethene-containing diazides (2) are performed in dimethylformamide at 100 °C for 7 and 12 h, producing hyperbranched poly(phenyltriazolylcarboxylate)s (hb-PPTCs) with high molecular weights and satisfactory regioregularities in good yields. The hb-PPTCs have good solubility in common organic solvents and high thermal stability. They are non-emissive in solutions, but emit intensively upon aggregation, showing an aggregation-induced emission effect. Their aggregates can work as fluorescent sensors for explosive detection with high sensitivity. Furthermore, the polymers can be utilized for the fabrication of 2D fluorescent patterns with high resolution by UV irradiation through copper grid masks.


Asunto(s)
Azidas/química , Química Clic/métodos , Fenilpropionatos/química , Polímeros/química , Reacción de Cicloadición , Estructura Molecular , Polimerizacion , Triazoles/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda