Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
EMBO J ; 43(8): 1634-1652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467832

RESUMEN

During bacterial cell growth, hydrolases cleave peptide cross-links between strands of the peptidoglycan sacculus to allow new strand insertion. The Pseudomonas aeruginosa carboxyl-terminal processing protease (CTP) CtpA regulates some of these hydrolases by degrading them. CtpA assembles as an inactive hexamer composed of a trimer-of-dimers, but its lipoprotein binding partner LbcA activates CtpA by an unknown mechanism. Here, we report the cryo-EM structures of the CtpA-LbcA complex. LbcA has an N-terminal adaptor domain that binds to CtpA, and a C-terminal superhelical tetratricopeptide repeat domain. One LbcA molecule attaches to each of the three vertices of a CtpA hexamer. LbcA triggers relocation of the CtpA PDZ domain, remodeling of the substrate binding pocket, and realignment of the catalytic residues. Surprisingly, only one CtpA molecule in a CtpA dimer is activated upon LbcA binding. Also, a long loop from one CtpA dimer inserts into a neighboring dimer to facilitate the proteolytic activity. This work has revealed an activation mechanism for a bacterial CTP that is strikingly different from other CTPs that have been characterized structurally.


Asunto(s)
Endopeptidasas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Endopeptidasas/metabolismo , Proteolisis
2.
Nat Methods ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744918

RESUMEN

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

3.
Proc Natl Acad Sci U S A ; 121(18): e2319727121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669181

RESUMEN

The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ADN/química , Replicación del ADN , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química
4.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763336

RESUMEN

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Asunto(s)
Adenosina Trifosfatasas , Humanos , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , Transporte Biológico , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Conformación Proteica
5.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421617

RESUMEN

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Asunto(s)
Triploidía , Pez Cebra , Masculino , Animales , Femenino , Tetraploidía , Semillas , Poliploidía , Ploidias
6.
FASEB J ; 38(15): e23865, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096136

RESUMEN

A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.


Asunto(s)
Mitocondrias , Mitofagia , Osteoprotegerina , Ligamento Periodontal , Ligando RANK , Técnicas de Movimiento Dental , Animales , Mitofagia/fisiología , Ratas , Ligando RANK/metabolismo , Ligamento Periodontal/metabolismo , Osteoprotegerina/metabolismo , Mitocondrias/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Adolescente , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células Madre/metabolismo , Remodelación Ósea/fisiología , Células Cultivadas
7.
Am J Respir Crit Care Med ; 209(12): 1463-1476, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358857

RESUMEN

Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.


Asunto(s)
Rechazo de Injerto , Trasplante de Pulmón , Humanos , Trasplante de Pulmón/efectos adversos , Masculino , Rechazo de Injerto/microbiología , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Estudios Transversales , Adulto , Microbiota , ARN Ribosómico 16S/genética , Pulmón/microbiología , Anciano , Enfermedad Aguda
8.
Subcell Biochem ; 104: 383-408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963493

RESUMEN

Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.


Asunto(s)
Flavinas , Transporte de Electrón , Flavinas/metabolismo , Flavinas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Conformación Proteica , Modelos Moleculares , Oxidación-Reducción
9.
J Cell Mol Med ; 28(15): e18582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39107876

RESUMEN

Catheter ablation (CA) is an essential method for the interventional treatment of atrial fibrillation (AF), and it is very important to reduce long-term recurrence after CA. The mechanism of recurrence after CA is still unclear. We established a long-term model of beagle canines after circumferential pulmonary vein ablation (CPVA). The transcriptome and proteome were obtained using high-throughput sequencing and TMT-tagged LC-MS/LC analysis, respectively. Differentially expressed genes and proteins were screened and enriched, and the effect of fibrosis was found and verified in tissues. A downregulated protein, neuropeptide Y (NPY), was selected for validation and the results suggest that NPY may play a role in the long-term reinduction of AF after CPVA. Then, the molecular mechanism of NPY was further investigated. The results showed that the atrial effective refractory period (AERP) was shortened and fibrosis was increased after CPVA. Atrial myocyte apoptosis was alleviated by NPY intervention, and Akt activation was inhibited in cardiac fibroblasts. These results suggest that long-term suppression of NPY after CPVA may lead to induction of AF through promoting cardiomyocyte apoptosis and activating the Akt pathway in cardiac fibroblasts, which may make AF more likely to reinduce.


Asunto(s)
Apoptosis , Fibrilación Atrial , Ablación por Catéter , Miocardio , Neuropéptido Y , Venas Pulmonares , Animales , Perros , Apoptosis/efectos de los fármacos , Fibrilación Atrial/metabolismo , Fibrilación Atrial/cirugía , Fibrilación Atrial/patología , Ablación por Catéter/métodos , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Multiómica , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neuropéptido Y/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Venas Pulmonares/metabolismo , Venas Pulmonares/cirugía , Transcriptoma
10.
Phys Chem Chem Phys ; 26(9): 7398-7406, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38351847

RESUMEN

Enhanced upconversion via plasmonics has considerable potential in biosensors and solar cells; however, conventional plasmonic configurations such as core-shell assemblies or nanoarray platforms still suffer from the compromise between the enhancement factor and monodispersity, which has failed to meet the requirement of the materials for the in vivo all-solution-prepared solar cells and biosensors. We herein report a monodisperse metal-dielectric-metal (MDM) type upconverted hybrid material with high efficiency. The lanthanide-doped upconversion nanoparticles (UCNPs) were sandwiched by two gold nanodisk mirrors, and the highly localized excitation field around the UCNPs together with the efficient coupling enhanced the upconversion. The upconversion intensity can then be effectively regulated and improved by three to four orders of magnitude. As per the measurement of the temperature-dependent fluorescence intensity and spectra shift, a dual-mode nanothermometer based on our proposed hybrid materials was demonstrated. This MDM-type upconverted hybrid material demonstrated the merits of high efficiency and monodispersity, which demonstrated promise in in vivo biosensors and solar cell fabrication techniques such as spin-coating and roll-to-roll.

11.
Bioorg Chem ; 147: 107354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599054

RESUMEN

Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.


Asunto(s)
Hypericum , Simulación del Acoplamiento Molecular , Floroglucinol , Receptor X de Pregnano , Hypericum/química , Receptor X de Pregnano/agonistas , Receptor X de Pregnano/metabolismo , Humanos , Floroglucinol/farmacología , Floroglucinol/química , Floroglucinol/análogos & derivados , Relación Estructura-Actividad , Estructura Molecular , Terpenos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células Hep G2
12.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112769

RESUMEN

Our previous study shows that activation of pregnane X receptor (PXR) exerts hepatoprotection against lithocholic acid (LCA)-induced cholestatic liver injury. In this study we investigated whether PXR activation could inhibit hepatocyte pyroptosis, as well as the underlying mechanisms. Male mice were treated with mouse PXR agonist pregnenolone 16α-carbonitrile (PCN, 50 mg·kg-1·d-1, i.p.) for 7 days, and received LCA (125 mg/kg, i.p., bid) from D4, then sacrificed 12 h after the last LCA injection. We showed that LCA injection resulted in severe cholestatic liver injury characterized by significant increases in gallbladder size, hepatocellular necrosis, and neutrophil infiltration with a mortality rate of 68%; PCN treatment significantly inhibited hepatocyte pyroptosis during LCA-induced cholestatic liver injury, as evidenced by reduced serum lactic dehydrogenase (LDH) levels, TUNEL-positive cells and hepatocyte membrane damage. Furthermore, PXR activation suppressed both the NOD-like receptor protein 3 (NLRP3) inflammasome-induced canonical pyroptosis and the apoptosis protease activating factor-1 (APAF-1) pyroptosome-induced non-canonical pyroptosis. Inhibition of the nuclear factor kappa B (NF-κB) and forkhead box O1 (FOXO1) signaling pathways was also observed following PXR activation. Notably, dual luciferase reporter assay showed that PXR activation inhibited the transcriptional effects of NF-κB on NLRP3, as well as FOXO1 on APAF-1. Our results demonstrate that PXR activation protects against cholestatic liver injury by inhibiting the canonical pyroptosis through the NF-κB-NLRP3 axis and the non-canonical pyroptosis through the FOXO1-APAF-1 axis, providing new evidence for PXR as a prospective anti-cholestatic target.

13.
Angew Chem Int Ed Engl ; 63(21): e202400943, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509839

RESUMEN

The first total synthesis of the Euphorbia diterpenoid pepluacetal is disclosed in both racemic and chiral fashions. The synthesis strategically relies on a photo-induced Wolff rearrangement/lactonization cascade (WRLC) reaction to access the cyclobutane moiety, a ring-closing metathesis/cyclopropanation sequence to rapidly forge the 7-3 bicyclic system, and a late-stage Rh-catalyzed transannular carbenoid insertion to C(sp3)-H bond followed by a Baeyer-Villiger oxidation and ring-opening manipulations to install the side chain. The synthetic route demonstrates excellent stereochemical control on the non-classical concave-face bond formation, remote traceless stereochemical relay and high scalability to provide 20 mg of (+)-pepluacetal.

14.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203341

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and has a high incidence in the elderly. Unfortunately, there is no effective therapy for AD owing to its complicated pathogenesis. However, the development of lipid-lowering anti-inflammatory drugs has heralded a new era in the treatment of Alzheimer's disease. Several studies in recent years have shown that lipid metabolic dysregulation and neuroinflammation are associated with the pathogenesis of AD. 3-Hydroxyl 3-methylglutaryl CoA reductase (HMGCR) is a rate-limiting enzyme in cholesterol synthesis that plays a key role in cholesterol metabolism. HMGCR inhibitors, known as statins, have changed from being solely lipid-lowering agents to neuroprotective compounds because of their effects on lipid levels and inflammation. In this review, we first summarize the main regulatory mechanism of HMGCR affecting cholesterol biosynthesis. We also discuss the pathogenesis of AD induced by HMGCR, including disordered lipid metabolism, oxidative stress, inflammation, microglial proliferation, and amyloid-ß (Aß) deposition. Subsequently, we explain the possibility of HMGCR as a potential target for AD treatment. Statins-based AD treatment is an ascent field and currently quite controversial; therefore, we also elaborate on the current application prospects and limitations of statins in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Neurodegenerativas , Anciano , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hidroximetilglutaril-CoA Reductasas , Radical Hidroxilo , Inflamación , Colesterol , Lípidos
15.
Anal Chim Acta ; 1285: 341971, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057065

RESUMEN

Enzymes play crucial roles in life sciences, pharmaceuticals and industries as biological catalysts that speed up biochemical reactions in living organisms. New catalytic reactions are continuously developed by enzymatic engineering to meet industrial needs, which thereby drives the development of analytical approaches for real-time reaction monitoring to reveal catalytic processes. Here, taking the hydrolase- chymotrypsin as a model system, we proposed a convenient method for monitoring catalytic processes through native top-down mass spectrometry (native TDMS). The chymotrypsin sample heterogeneity was first explored. By altering sample introduction modes and pHs, covalent and noncovalent enzymatic complexes, substrates and products can be monitored during the catalysis and further confirmed by tandem MS. Our results demonstrated that native TDMS based catalysis monitoring has distinctive strength on real-time inspection and continuous observation, making it a promising tool for characterizing more biocatalysts.


Asunto(s)
Quimotripsina , Quimotripsina/química , Hidrólisis , Espectrometría de Masas/métodos , Catálisis
16.
FEBS J ; 291(9): 1889-1891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581152

RESUMEN

Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.


Asunto(s)
ADN Polimerasa I , ADN , ARN , Humanos , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Cartilla de ADN/genética , Replicación del ADN , ARN/química , ARN/metabolismo , ARN/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-38877193

RESUMEN

Dredging eutrophic lake sediments can improve water quality, but it also requires dewatering and valorizing the dredged material to avoid wasting resources like phosphorus. This study experimentally investigated the basic mechanism and performance of electroosmotic dewatering of 1-L dredged sediments using different electric currents (20 mA, 40 mA, and 60 mA) after gravity filtration. The dewatering performance, moisture content and distribution, effect of electrochemical reaction on dewaterability, energy consumption, and changes in metals and phosphorus (P) distribution and pH values were analyzed. The results indicated that electroosmotic dewatering effectively decreased sediment mass by predominantly eliminating free and a portion of interstitial water, with reductions ranging from 7 to 20%. The optimal duration and current should, however, be considered to balance water removal and energy consumption. Higher moisture removal occurred with 40 mA for 24 h and 60 mA for 6 h, while the energy consumption obtained with 60 mA (0.201 kWh/kg water removed) was significantly lower than that of applying 40 mA for 24 h (0.473 kWh/kg water removed), with the assistance of ohmic heating, resulting in reduced viscosity and water release from capillaries. The tested conditions did not significantly extract heavy metals or P from the sediments, which may facilitate the disposal of the removed water back into the lake and the utilization of the treated sediments for different purposes. This technology is easy to operate and suitable for the treatment of dredged sediments, and the dewatering result is comparable to low pressurized filtration but at low energy consumption.

18.
Nefrologia (Engl Ed) ; 44(2): 180-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697696

RESUMEN

BACKGROUND: Contrast agents can directly or indirectly induce renal tubular ischemia and hypoxic damage. Given that cobalt chloride (CoCl2) can protect renal tubules, the protective effect and potential mechanism of action of CoCl2 on contrast-induced nephropathy (CIN) warrant investigation. METHODS: A CIN mouse model was established to determine the protective effect of CoCl2 on renal injury in vivo. Then, TMT-based proteomics was performed to determine the differentially expressed proteins (DEPs), following which, enrichment analyses of gene ontology and the KEGG pathway were performed. In vitro, a CIN model was constructed with renal tubular epithelial cells (HK-2) to determine the effect of CoCl2 on potential targets and the role of the key protein identified from the in vivo experiments. RESULTS: CoCl2 treatment decreased the levels of BUN and serum creatinine (sCr), while increasing the levels of urea and creatinine (Cr) in the urine of mice after CIN injury. Damage to the renal tubules in the CoCl2 treatment group was significantly less than in the CIN model group. We identified 79 DEPs after treating the in vivo model with CoCl2, and frequently observed ferroptosis-related GO and KEGG pathway terms. Of these, Hp (haptoglobin) was selected and found to have a strong renoprotective effect, even though its expression level in kidney tissue decreased after CoCl2 treatment. In HK-2 cells, overexpression of Hp reduced the ferroptosis caused by erastin, while knocking down Hp negated the attenuation effect of CoCl2 on HK-2 cell ferroptosis. CONCLUSION: CoCl2 attenuated kidney damage in the CIN model, and this effect was associated with the decrease in ferroptosis mediated by Hp.


Asunto(s)
Cobalto , Medios de Contraste , Ferroptosis , Ferroptosis/efectos de los fármacos , Animales , Ratones , Medios de Contraste/efectos adversos , Masculino , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología
19.
J Investig Med ; : 10815589241257214, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785311

RESUMEN

To explore the causal relationship between obesity and hypothyroidism and identify risk factors and the predictive value of subclinical hypothyroidism (SCH) in obese patients using Mendelian randomization, this study employed five Mendelian randomization methods (MR Egger, Weighted Median, Inverse Variance Weighted, Simple Mode, and Weighted Mode) to analyze clinical data from 308 obese patients at the People's Hospital of Xinjiang Uygur Autonomous Region, from January 2015 to June 2023. Patients were divided based on thyroid function tests into normal (n = 173) and SCH groups (n = 56). Comparative analyses, along with univariate and multivariate logistic regression, were conducted to identify risk factors for SCH in obese patients. A significant association between obesity and hypothyroidism was established, especially highlighted by the inverse variance weighted method. SCH patients showed higher ages, thyroid-stimulating hormone levels, and thyroid autoantibody positivity rates, with lower T4 and FT4 levels. Age, FT4, thyroid autoantibodies, TPO-Ab, and Tg-Ab were confirmed as risk factors. The predictive value of FT4 levels for SCH in obesity was significant, with an Area Under the Curve (AUC) of 0.632. The study supports a potential causal link between obesity and hypothyroidism, identifying specific risk factors for SCH in obese patients. FT4 level stands out as an independent predictive factor, suggesting its utility in early diagnosis and preventive strategies for SCH.

20.
Nat Commun ; 15(1): 660, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253530

RESUMEN

The molecular chaperone DnaK is essential for viability of Mycobacterium tuberculosis (Mtb). DnaK hydrolyzes ATP to fold substrates, and the resulting ADP is exchanged for ATP by the nucleotide exchange factor GrpE. It has been unclear how GrpE couples DnaK's nucleotide exchange with substrate release. Here we report a cryo-EM analysis of GrpE bound to an intact Mtb DnaK, revealing an asymmetric 1:2 DnaK-GrpE complex. The GrpE dimer ratchets to modulate both DnaK nucleotide-binding domain and the substrate-binding domain. We further show that the disordered GrpE N-terminus is critical for substrate release, and that the DnaK-GrpE interface is essential for protein folding activity both in vitro and in vivo. Therefore, the Mtb GrpE dimer allosterically regulates DnaK to concomitantly release ADP in the nucleotide-binding domain and substrate peptide in the substrate-binding domain.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Nucleótidos , Polímeros , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda