Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.155
Filtrar
1.
Nature ; 600(7887): 81-85, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34853456

RESUMEN

Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis1-3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates.

2.
Proc Natl Acad Sci U S A ; 121(8): e2319364121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359296

RESUMEN

Clonal hematopoiesis (CH) represents the clonal expansion of hematopoietic stem cells and their progeny driven by somatic mutations. Accurate risk assessment of CH is critical for disease prevention and clinical decision-making. The size of CH has been showed to associate with higher disease risk, yet, factors influencing the size of CH are unknown. In addition, the characteristics of CH in long-lived individuals are not well documented. Here, we report an in-depth analysis of CH in longevous (≥90 y old) and common (60~89 y old) elderly groups. Utilizing targeted deep sequencing, we found that the development of CH is closely related to age and the expression of aging biomarkers. The longevous elderly group exhibited a significantly higher incidence of CH and significantly higher frequency of TET2 and ASXL1 mutations, suggesting that certain CH could be beneficial to prolong life. Intriguingly, the size of CH neither correlates significantly to age, in the range of 60 to 110 y old, nor to the expression of aging biomarkers. Instead, we identified a strong correlation between large CH size and the number of mutations per individual. These findings provide a risk assessment biomarker for CH and also suggest that the evolution of the CH is influenced by factor(s) in addition to age.


Asunto(s)
Hematopoyesis Clonal , Hematopoyesis , Humanos , Anciano , Hematopoyesis Clonal/genética , Hematopoyesis/genética , Envejecimiento/genética , Mutación , Biomarcadores
3.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422020

RESUMEN

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Envejecimiento/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Pronóstico
4.
Nat Mater ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589543

RESUMEN

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

5.
Plant Physiol ; 195(3): 1880-1892, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38478589

RESUMEN

Manipulation of gene expression is central to understanding gene function, engineering cell behavior, and altering biological traits according to production demands. Nuclease-dead Cas9 (dCas9), a variant of active Cas9, offers a versatile platform for the precise control of genome function without DNA cleavage. Notably, however, an effective and universal dCas9-based transcriptional repression system remains unavailable in plants. The noncanonical histone acetyltransferase TENDRIL-LESS (CsTEN) is responsible for chromatin loosening and histone modification in cucumber (Cucumis sativus). In this study, we engineered a gene regulation tool by fusing TEN and its truncated proteins with dCas9. The full-length dCas9-TEN protein substantially repressed gene expression, with the N-terminal domain identified as the core repression domain. We subsequently validated the specificity and efficacy of this system through both transient infection and genetic transformation in cucumber and Arabidopsis (Arabidopsis thaliana). The electrophoretic mobility shift assay (EMSA) revealed the ability of the N-terminal domain of TEN to bind to chromatin, which may promote target binding of the dCas9 complex and enhance the transcriptional repression effect. Our tool enriches the arsenal of genetic regulation tools available for precision breeding in crops.


Asunto(s)
Arabidopsis , Proteína 9 Asociada a CRISPR , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Cucumis sativus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Cromatina/metabolismo , Cromatina/genética
6.
Plant Cell ; 34(10): 3915-3935, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35866997

RESUMEN

PICKLE (PKL) is a chromodomain helicase DNA-binding domain 3 (CHD3) chromatin remodeler that plays essential roles in controlling the gene expression patterns that determine developmental identity in plants, but the molecular mechanisms through which PKL is recruited to its target genes remain elusive. Here, we define a cis-motif and trans-acting factors mechanism that governs the genomic occupancy profile of PKL in Arabidopsis thaliana. We show that two homologous trans-factors VIVIPAROUS1/ABI3-LIKE1 (VAL1) and VAL2 physically interact with PKL in vivo, localize extensively to PKL-occupied regions in the genome, and promote efficient PKL recruitment at thousands of target genes, including those involved in seed maturation. Transcriptome analysis and genetic interaction studies reveal a close cooperation of VAL1/VAL2 and PKL in regulating gene expression and developmental fate. We demonstrate that this recruitment operates at two master regulatory genes, ABSCISIC ACID INSENSITIVE3 and AGAMOUS-LIKE 15, to repress the seed maturation program and ensure the seed-to-seedling transition. Together, our work unveils a general rule through which the CHD3 chromatin remodeler PKL binds to its target chromatin in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Semillas/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Cell ; 34(2): 889-909, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850198

RESUMEN

Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ácidos Fosfatidicos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hipoxia , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fenotipo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(49): e2211429119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442087

RESUMEN

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. Robust identification of clinically and biologically relevant molecular subtypes from nongenomic high-throughput sequencing data remains challenging. We established the largest multicenter AML cohort (n = 655) in China, with all patients subjected to RNA sequencing (RNA-Seq) and 619 (94.5%) to targeted or whole-exome sequencing (TES/WES). Based on an enhanced consensus clustering, eight stable gene expression subgroups (G1-G8) with unique clinical and biological significance were identified, including two unreported (G5 and G8) and three redefined ones (G4, G6, and G7). Apart from four well-known low-risk subgroups including PML::RARA (G1), CBFB::MYH11 (G2), RUNX1::RUNX1T1 (G3), biallelic CEBPA mutations or -like (G4), four meta-subgroups with poor outcomes were recognized. The G5 (myelodysplasia-related/-like) subgroup enriched clinical, cytogenetic and genetic features mimicking secondary AML, and hotspot mutations of IKZF1 (p.N159S) (n = 7). In contrast, most NPM1 mutations and KMT2A and NUP98 fusions clustered into G6-G8, showing high expression of HOXA/B genes and diverse differentiation stages, from hematopoietic stem/progenitor cell down to monocyte, namely HOX-primitive (G7), HOX-mixed (G8), and HOX-committed (G6). Through constructing prediction models, the eight gene expression subgroups could be reproduced in the Cancer Genome Atlas (TCGA) and Beat AML cohorts. Each subgroup was associated with distinct prognosis and drug sensitivities, supporting the clinical applicability of this transcriptome-based classification of AML. These molecular subgroups illuminate the complex molecular network of AML, which may promote systematic studies of disease pathogenesis and foster the screening of targeted agents based on omics.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Transcriptoma , Leucemia Mieloide Aguda/genética , Diferenciación Celular/genética , Células Madre Hematopoyéticas
9.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385357

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Niño , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
10.
Nano Lett ; 24(27): 8410-8417, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920331

RESUMEN

Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.


Asunto(s)
ADN , Nanotecnología , ADN/química , Animales , Ratones , Nanotecnología/métodos , Nanoestructuras/química , Nanopartículas/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Mensajero/genética , ARN Mensajero/química , Regulación de la Expresión Génica , Especificidad de Órganos , Conformación de Ácido Nucleico , Lípidos/química
11.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408023

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

12.
J Cell Mol Med ; 28(7): e18225, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506082

RESUMEN

Circular RNAs (circRNAs) function as tumour promoters or suppressors in bladder cancer (BLCA) by regulating genes involved in macrophage recruitment and polarization. However, the underlying mechanisms are largely unknown. The aim of this study was to determine the biological role of circLOC729852 in BLCA. CircLOC729852 was upregulated in BLCA tissues and correlated with increased proliferation, migration and epithelial mesenchymal transition (EMT) of BCLA cells. MiR-769-5p was identified as a target for circLOC729852, which can upregulate IL-10 expression by directly binding to and suppressing miR-769-5p. Furthermore, our results indicated that the circLOC729852/miR-769-5p/IL-10 axis modulates autophagy signalling in BLCA cells and promotes the recruitment and M2 polarization of TAMs by activating the JAK2/STAT3 signalling pathway. In addition, circLOC729852 also promoted the growth of BLCA xenografts and M2 macrophage infiltration in vivo. Thus, circLOC729852 functions as an oncogene in BLCA by inducing secretion of IL-10 by the M2 TAMs, which then facilitates tumour cell growth and migration. Taken together, circLOC729852 is a potential diagnostic biomarker and therapeutic target for BLCA.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de la Vejiga Urinaria/patología , Proliferación Celular/genética , Macrófagos/metabolismo
13.
BMC Genomics ; 25(1): 260, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454328

RESUMEN

In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.


Asunto(s)
Aconitum , Filogenia , Aconitum/genética , Aconitum/química , Aconitum/metabolismo , Orgánulos/genética , Tibet
14.
J Am Chem Soc ; 146(6): 4060-4067, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38300299

RESUMEN

Methylenecyclopropanes (MCPs) have emerged as versatile building blocks in synthetic chemistry because of their unique reactivity. However, metal-catalyzed hydrosilylation of MCPs has met with very limited successes. In this paper, catalytic selective hydrosilylations of MCPs with some primary silanes using an ene-diamido lanthanum ate complex as the catalyst were described. The catalytic reactions resulted in the selective formation of silacyclopentanes and (E)-homoallylsilanes, respectively, depending on the substituents on MCPs. The formation of silacyclopentanes via a catalytic cascade inter- and intramolecular hydrosilylation mechanism is strongly supported by the control and deuteration-labeling experiments and DFT calculations. The unique reactivity and selectivity could be attributed to the large lanthanum ion and ate structure of the catalyst.

15.
J Am Chem Soc ; 146(8): 5532-5542, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38362877

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.

16.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656110

RESUMEN

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

17.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38409670

RESUMEN

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

18.
Anal Chem ; 96(17): 6784-6793, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632870

RESUMEN

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Espectrometría Raman , Antígenos de Superficie de la Hepatitis B/sangre , Espectrometría Raman/métodos , Humanos , Virus de la Hepatitis B/aislamiento & purificación , Nanopartículas del Metal/química , Hepatitis B/sangre , Hepatitis B/diagnóstico , Propiedades de Superficie , Límite de Detección
19.
J Gene Med ; 26(1): e3569, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37533324

RESUMEN

BACKGROUND: Cholangiocarcinoma is a prevalent gastrointestinal tumor with limited effective early diagnostic methods. The role of neutrophils in the context of cholangiocarcinoma remains largely unexplored. METHODS: A comprehensive analysis was performed on a cohort of cholangiocarcinoma samples (TCGA-CHOL) from the TCGA database to investigate the relationship between cholangiocarcinoma and neutrophils. Methodologies included single-sample gene set enrichment analysis (ssGSEA), differential expression analysis, weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA). RESULTS: The study identified a significant decrease of neutrophils in cholangiocarcinoma via ssGSEA. WGCNA and differential expression analysis led to the identification of a neutrophil-related gene module comprised of 1059 genes. Cluster 1, showing a higher proportion of neutrophils, was linked to better survival outcomes. GSEA disclosed downregulation of complement, inflammatory response and interferon response pathways in Cluster 2, hinting at possible cholangiocarcinoma development triggers. A notable upregulation of PD1, PD-L1 and CTLA4 was observed in Cluster 1, suggesting potential benefits from immunotherapy. A prognostic model was developed based on clinical data and expression levels of three prognostic genes (SOWAHD, TNFAIP8 and EBF3) showing satisfactory discrimination, calibration and clinical benefits. An overexpression of TNFAIP8 in cholangiocarcinoma cells was found, with its knockdown significantly inhibiting cell proliferation and migration. CONCLUSIONS: This study elucidates a neutrophil-related gene module and prognostic genes, offering insights into the role of neutrophils in cholangiocarcinoma development and progression. It also introduces a clinical prediction model for enhanced prognosis assessment. These findings may lay the groundwork for the development of innovative therapeutic strategies in cholangiocarcinoma treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Pronóstico , Neutrófilos , Modelos Estadísticos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Factores de Transcripción
20.
Small ; 20(28): e2311393, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38287737

RESUMEN

Electrolyte plays a crucial role in ensuring stable operation of lithium metal batteries (LMBs). Localized high-concentration electrolytes (LHCEs) have the potential to form a robust solid-electrolyte interphase (SEI) and mitigate Li dendrite growth, making them a highly promising electrolyte option. However, the principles governing the selection of diluents, a crucial component in LHCE, have not been clearly determined, hampering the advancement of such a type of electrolyte systems. Herein, the diluents from the perspective of molecular polarity are rationally designed and developed. A moderately fluorinated solvent, 1-(1,1,2,2-tetrafluoroethoxy)propane (TNE), is employed as a diluent to create a novel LHCE. The unique molecular structure of TNE enhances the intrinsic dipole moment, thereby altering solvent interactions and the coordination environment of Li-ions in LHCE. The achieved solvation structure not only enhances the bulk properties of LHCE, but also facilitates the formation of more stable anion-derived SEIs featured with a higher proportion of inorganic species. Consequently, the corresponding full cells of both Li||LiFePO4 and Li||LiNi0.8Co0.1Mn0.1O2 cells utilizing Li thin-film anodes exhibit extended long-term stability with significantly improved average Coulombic efficiency. This work offers new insights into the functions of diluents in LHCEs and provides direction for further optimizing the LHCEs for LMBs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda