Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Plant Cell ; 35(5): 1593-1616, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36695476

RESUMEN

High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.


Asunto(s)
Peróxido de Hidrógeno , Piruvaldehído , Peróxido de Hidrógeno/metabolismo , Piruvaldehído/metabolismo , Estrés Salino , Estrés Oxidativo , Plantas/metabolismo , Cloroplastos/metabolismo , Estrés Fisiológico
2.
Nucleic Acids Res ; 52(14): 8370-8384, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38888121

RESUMEN

The Klebsiella pneumoniae (K. pneumoniae, Kp) populations carrying both resistance-encoding and virulence-encoding mobile genetic elements (MGEs) significantly threaten global health. In this study, we identified a new anti-CRISPR gene (acrIE10) on a conjugative plasmid with self-target sequence in K. pneumoniae with type I-E* CRISPR-Cas system. AcrIE10 interacts with the Cas7* subunit of K. pneumoniae I-E* CRISPR-Cas system. The crystal structure of the AcrIE10-KpCas7* complex suggests that AcrIE10 suppresses the I-E* CRISPR-Cas by binding directly to Cas7 to prevent its hexamerization, thereby preventing the surveillance complex assembly and crRNA loading. Bioinformatic and functional analyses revealed that AcrIE10 is functionally widespread across diverse species. Our study reports a novel anti-CRISPR and highlights its potential role in spreading resistance and virulence among pathogens.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Klebsiella pneumoniae , Plásmidos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Plásmidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Virulencia/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética
3.
PLoS Pathog ; 19(2): e1011189, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36812247

RESUMEN

Increasing evidence highlights the role of bacteria in promoting tumorigenesis. The underlying mechanisms may be diverse and remain poorly understood. Here, we report that Salmonella infection leads to extensive de/acetylation changes in host cell proteins. The acetylation of mammalian cell division cycle 42 (CDC42), a member of the Rho family of GTPases involved in many crucial signaling pathways in cancer cells, is drastically reduced after bacterial infection. CDC42 is deacetylated by SIRT2 and acetylated by p300/CBP. Non-acetylated CDC42 at lysine 153 shows an impaired binding of its downstream effector PAK4 and an attenuated phosphorylation of p38 and JNK, consequently reduces cell apoptosis. The reduction in K153 acetylation also enhances the migration and invasion ability of colon cancer cells. The low level of K153 acetylation in patients with colorectal cancer (CRC) predicts a poor prognosis. Taken together, our findings suggest a new mechanism of bacterial infection-induced promotion of colorectal tumorigenesis by modulation of the CDC42-PAK axis through manipulation of CDC42 acetylation.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Salmonella , Proteína de Unión al GTP cdc42 , Humanos , Acetilación , Carcinogénesis , Proteína de Unión al GTP cdc42/metabolismo , Transformación Celular Neoplásica , Quinasas p21 Activadas/metabolismo , Transducción de Señal
4.
Am J Pathol ; 194(6): 975-988, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38423356

RESUMEN

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Asunto(s)
Enteritis , Microbioma Gastrointestinal , Células Caliciformes , Homeostasis , Ratones Noqueados , Mucina 2 , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Disbiosis/microbiología , Disbiosis/metabolismo , Enteritis/microbiología , Enteritis/metabolismo , Enteritis/patología , Células Caliciformes/patología , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Mucina 2/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/patología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/microbiología , Factor Trefoil-3/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de la radiación , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/efectos de la radiación
5.
Exp Cell Res ; 437(1): 113997, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508328

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.


Asunto(s)
Displasia Broncopulmonar , Lipopolisacáridos , Animales , Femenino , Humanos , Recién Nacido , Embarazo , Ratas , Displasia Broncopulmonar/inducido químicamente , Displasia Broncopulmonar/metabolismo , Elastina , Receptores ErbB/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Factor de Crecimiento Transformador alfa
6.
J Am Chem Soc ; 146(26): 17580-17586, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900598

RESUMEN

The application of sulfinamides has been witnessed in medicinal and agrochemistry with employment in asymmetric transformations. However, methods for their asymmetric catalytic synthesis have rarely been explored. Herein, the catalytic enantioselective addition of aryl boroxines to sulfinylamines via Cu catalyst and the newly developed Xuphos ligand were reported. A series of chiral aryl sulfinamides can be readily accessed in one step. This protocol enables the stereospecific transformation of sulfinamides to sulfonimidoyl fluorides, sulfonimidamides, and sulfonimidate esters. DFT calculations have revealed the reaction pathway, and the migratory insertion is the enantio-determining step. The noncovalent interaction between the oxygen atom of sulfinylamines and the C-H bonds in the ligand is crucial for enantioselectivity control.

7.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099016

RESUMEN

The proteasome is central to proteolysis by the ubiquitin-proteasome system under normal growth conditions but is itself degraded through macroautophagy under nutrient stress. A recently described AMP-activated protein kinase (AMPK)-regulated endosomal sorting complex required for transport (ESCRT)-dependent microautophagy pathway also regulates proteasome trafficking and degradation in low-glucose conditions in yeast. Aberrant proteasomes are more prone to microautophagy, suggesting the ESCRT system fine-tunes proteasome quality control under low-glucose stress. Here, we uncover additional features of the selective microautophagy of proteasomes in budding yeast. Genetic or pharmacological induction of aberrant proteasomes is associated with increased mono- or oligo-ubiquitylation of proteasome components, which appears to be recognized by ESCRT-0. AMPK controls this pathway in part by regulating the trafficking of ESCRT-0 to the vacuole surface, which also leads to degradation of the Vps27 subunit of ESCRT-0. The Rsp5 ubiquitin ligase contributes to proteasome subunit ubiquitylation, and multiple ubiquitin-binding elements in Vps27 are involved in their recognition. We propose that ESCRT-0 at the vacuole surface recognizes ubiquitylated proteasomes and initiates their microautophagic elimination during glucose depletion. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Microautofagia , Proteínas de Saccharomyces cerevisiae , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
8.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362510

RESUMEN

Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Anticuerpos ampliamente neutralizantes , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
9.
BMC Microbiol ; 24(1): 130, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643095

RESUMEN

BACKGROUND: Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS: In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1ß) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS: We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.


Asunto(s)
Monocitos , Mycobacterium bovis , Humanos , Vacuna BCG , Inmunidad Entrenada , Proteínas Proto-Oncogénicas c-akt/genética , Células THP-1 , Fosfatidilinositol 3-Quinasas , Citocinas
10.
Cancer Invest ; 42(3): 212-225, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527848

RESUMEN

This study aimed to develop prognostic prediction models for patients diagnosed with synchronous thyroid and breast cancer (TBC). Utilizing the SEER database, key predictive factors were identified, including T stage of thyroid cancer, T stage of breast cancer, M stage of breast cancer, patient age, thyroid cancer surgery type, and isotope therapy. A nomogram predicting 5-year and 10-year survival rates was constructed and validated, exhibiting strong performance (C-statistic: 0.79 in the development cohort (95% CI: 0.74-0.84), and 0.82 in the validation cohort (95% CI: 0.77-0.89)). The area under the Receiver Operator Characteristic (ROC) curve ranged from 0.798 to 0.883 for both cohorts. Calibration and decision curve analyses further affirmed the model's clinical utility. Stratifying patients into high-risk and low-risk groups using the nomogram revealed significant differences in survival rates (P < 0.0001). The successful development and validation of this nomogram for predicting 5-year and 10-year survival rates in patients with synchronous TBC hold promise for similar patient populations, contributing significantly to cancer research.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Programa de VERF , Neoplasias de la Tiroides , Humanos , Femenino , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Persona de Mediana Edad , Pronóstico , Anciano , Neoplasias Primarias Múltiples/mortalidad , Neoplasias Primarias Múltiples/patología , Adulto , Tasa de Supervivencia , Estadificación de Neoplasias , Curva ROC
11.
Phys Chem Chem Phys ; 26(10): 8148-8157, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38380536

RESUMEN

Probing the interaction between molecules and protocells is crucial for understanding the passive transport of functional molecules in and out of artificial and real cells. Second-harmonic generation (SHG) has been proven to be a powerful method for analyzing the adsorption and cross-membrane transport of molecules on lipid bilayers. In this study, we used SHG and two-photon fluorescence (TPF) imaging to study the interaction of charged dye molecules (D289) with a lipid vesicle. Unexpectedly, it was observed that the transport of D289 at a relatively high concentration is not as efficient as that at a lower dye concentration. Periodic shrinking of the model protocell and discharging of D289 out from the vesicle were revealed by combined analyses of SHG and TPF images. The response of the vesicle to a surfactant was also analyzed with D289 as a probe. This work demonstrates that the combined SHG and TPF imaging method is a unique approach that can provide detailed information on the interaction of molecules and lipids (both morphology and molecular kinetics). Determining these subtle interfacial kinetics in molecules is important for understanding the mechanism of many biophysical processes occurring on lipids.

12.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949588

RESUMEN

Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.


Asunto(s)
Cardiolipinas , Colorantes Fluorescentes , Liposomas Unilamelares , Cardiolipinas/química , Colorantes Fluorescentes/química , Liposomas Unilamelares/química , Propiedades de Superficie , Liposomas/química , Cloruro de Sodio/química , Tensoactivos/química , Estructura Molecular
13.
Immunopharmacol Immunotoxicol ; 46(2): 240-254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38156770

RESUMEN

INTRODUCTION: Ulcerative colitis (UC) is an inflammatory intestine disease characterized by dysfunction of the intestinal mucosal barrier, ferroptosis, and apoptosis. Previous researches suggest that celecoxib, a nonsteroidal anti-inflammatory drug, holds promise in alleviating inflammation in UC. Therefore, this study aims to investigate the effects and mechanisms of celecoxib in UC. METHODS: To identify ferroptosis-related drugs and genes associated with UC, we utilized the Gene Expression Omnibus (GEO), FerrDb databases, and DGIdb database. Subsequently, we established a 2.5% DSS (Dextran sulfate sodium)-induced colitis model in mice and treated them with 10 mg/kg of celecoxib to validate the bioinformatics results. We evaluated histological pathologies, inflammatory response, intestinal barrier function, ferroptosis markers, and apoptosis regulators. RESULTS: Celecoxib treatment significantly ameliorated DSS-induced UC in mice, as evidenced by the body weight change curve, colon length change curve, disease activity index (DAI) score, and histological index score. Celecoxib treatment reduced the level of pro-inflammatory factors and promoted the expressions of intestinal tight junction proteins such as Claudin-1 and Occludin, thereby restoring the integrity of the intestinal mucosal barrier. Furthermore, celecoxib treatment reversed the ferroptosis characteristics in DSS-induced mice by increasing glutathione (GSH), decreasing malondialdehyde (MDA), and increasing the expression of GPX-4 and xCT. Additionally, apoptosis was induced in mice with UC, as evidenced by increased Caspase3, BAD, P53, BAX, Caspase9 and Aifm1 production, and decreased expression of BCL-XL and BCL2. Celecoxib treatment significantly reversed the apoptotic changes in DSS-induced mice. CONCLUSION: Our findings suggest that celecoxib effectively treats DSS-induced UC in mice by inhibiting ferroptosis and apoptosis.


Celecoxib enhancing intestinal barrier functionCelecoxib alleviates ferroptosis in DSS-induces ulcerative colitisCelecoxib effectively alleviates apoptosis signaling pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Ferroptosis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Celecoxib/farmacología , Colon/patología , Funcion de la Barrera Intestinal , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Glutatión/metabolismo , Apoptosis , Ratones Endogámicos C57BL
14.
J Prosthodont ; 33(3): 221-230, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37302066

RESUMEN

PURPOSE: To assess the clinical performance of screw-retained, ceramic-veneered, monolithic zirconia partial implant-supported fixed dental prostheses (ISFDP) over 5-10 years and to evaluate implant- and prosthesis-related factors influencing treatment failure and complications. MATERIALS AND METHODS: Partially edentulous patients treated with screw-retained all-ceramic ISFDPs with 2-4 prosthetic units with a documented follow-up of ≥5 years after implant loading were included in this retrospective study. The outcomes analyzed included implant/prosthesis failure and biological/technical complications. Possible risk factors were identified using the mixed effects Cox regression analysis. RESULTS: A screened sample of 171 participants with 208 prostheses (95% of the restorations were splinted crowns without a pontic) supported by 451 dental implants were enrolled in this study. The mean follow-up duration after prosthesis delivery was 82.4 ±17.2 months. By the end of the follow-up period, 431 (95.57%) of the 451 implants remained functional at the implant level. At the prosthesis level, 185 (88.94%) of the 208 partial ISFDPs remained functional. Biological complications were observed in 67 implants (14.86%), and technical complications were observed in 62 ISFDPs (29.81%). Analysis revealed only emergence profiles (over-contoured) as a significant risk factor for implant failure (P<0.001) and biological complications (P<0.001). Full-coverage ceramic-veneered zirconia prostheses had a significantly greater chance of chipping (P<0.001) compared with buccal-ceramic-veneered or monolithic zirconia prostheses. CONCLUSIONS: Screw-retained ceramic-veneered, monolithic partial ISFDPs have a favorable long-term survival rate. Over-contoured emergence profile is a significant risk factor associated with implant failure and biological complications. Buccal-ceramic-veneered and monolithic zirconia partial ISFDPs lower the initial prevalence of chipping compared with a full-coverage veneered design.


Asunto(s)
Cerámica , Circonio , Humanos , Estudios Retrospectivos , Coronas , Tornillos Óseos , Prótesis Dental de Soporte Implantado/efectos adversos , Fracaso de la Restauración Dental , Porcelana Dental , Dentadura Parcial Fija
15.
Angew Chem Int Ed Engl ; : e202410422, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039835

RESUMEN

Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7% depth of discharge or 50 mA·cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100% capacity retention at 3 A·g-1 and for over 3000 cycles even at lean electrolyte (7.5 µL·mAh-1) and high loading (15.26 mg·cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 oC).

16.
BMC Genomics ; 24(1): 648, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891463

RESUMEN

BACKGROUND: The Begonia species are common shade plants that are mostly found in southwest China. They have not been well studied despite their medicinal and decorative uses because gene penetration, decreased adaptability, and restricted availability are all caused by frequent interspecific hybridization. RESULT: To understand the patterns of mutation in the chloroplast genomes of different species of Begonia, as well as their evolutionary relationships, we collected seven Begonia species in China and sequenced their chloroplast genomes. Begonia species exhibit a quadripartite structure of chloroplast genomes (157,634 - 169,694 bp), consisting of two pairs of inverted repeats (IR: 26,529 - 37,674 bp), a large single copy (LSC: 75,477 - 86,500 bp), and a small single copy (SSC: 17,861 - 18,367 bp). 128-143 genes (comprising 82-93 protein-coding genes, 8 ribosomal RNAs, and 36-43 transfer RNAs) are found in the chloroplast genomes. Based on comparative analyses, this taxon has a relatively similar genome structure. A total of six substantially divergent DNA regions (trnT-UGU-trnL-UAA, atpF-atpH, ycf4-cemA, psbC-trnS-UGA, rpl32-trnL-UAG, and ccsA-ndhD) are found in the seventeen chloroplast genomes. These regions are suitable for species identification and phylogeographic analysis. Phylogenetic analysis shows that Begonia species that were suited to comparable environments grouped in a small clade and that all Begonia species formed one big clade in the phylogenetic tree, supporting the genus' monophyly. In addition, positive selection sites were discovered in eight genes (rpoC1, rpoB, psbE, psbK, petA, rps12, rpl2, and rpl22), the majority of which are involved in protein production and photosynthesis. CONCLUSION: Using these genome resources, we can resolve deep-level phylogenetic relationships between Begonia species and their families, leading to a better understanding of evolutionary processes. In addition to enhancing species identification and phylogenetic resolution, these results demonstrate the utility of complete chloroplast genomes in phylogenetically and taxonomically challenging plant groupings.


Asunto(s)
Begoniaceae , Genoma del Cloroplasto , Humanos , Filogenia , Begoniaceae/genética , Genómica/métodos , Cloroplastos/genética , Secuencia de Bases
17.
J Am Chem Soc ; 145(36): 19707-19714, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37578936

RESUMEN

The susceptibility to moisture of metal-organic frameworks (MOFs) is a critical bottleneck for their wider practical application. Constructing core-shell composites has been postulated as an effective strategy for enhancing moisture resistance, but for fragile MOFs this has rarely been accomplished. We report herein, for the first time, the construction of a customized hydrophobic porous shell, NTU-COF, on the particularly fragile MOF-5 by a "Plug-Socket Anchoring" strategy. Notably, the pore structure of MOF-5 was well maintained, and it could still achieve complete CO2/N2 separation under humid conditions. The homogeneous interface between MOF-5 and NTU-COF has been inspected at atomic resolution by a combination of cryogenic focused ion beam (cryo-FIB) and ultralow-dose (scanning) transmission electron microscope giving profound insight into the mechanism of assembly of the core-shell structure. This work presents a facile strategy for the fabrication of a hydrophobic porous shell for labile MOFs, and provides a general approach for solving the problem of moisture instability of porous materials for practical applications.

18.
Mol Carcinog ; 62(6): 866-881, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36988347

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest human malignancies characterized by late-stage diagnosis, drug resistance, and poor prognosis. Pyruvate dehydrogenase kinase 1 (PDK1) plays an important role in regulating the metabolic reprogramming of cancer cells. However, its expression, function, and regulatory mechanisms of PDK1 in ESCC have not been reported. In this study, we found that PDK1 silence and dichloroacetic acid (DCA) significantly inhibited the growth of ESCC cells and induced cell apoptosis. Interestingly, PDK1 is a direct target of miR-6516-5p, and miR-6516-5p/PDK1 axis suppressed the growth of ESCC cell by inhibiting glycolysis. Moreover, DCA and cisplatin (cis-diammine-dichloroplatinum, DDP) synergistically inhibited the progression and glycolysis ability of ESCC cells both in vitro and in vivo by increasing oxidative stress via the inhibition of the Keap1/Nrf2 signaling pathway. And, Tert-butylhydroquinone (TBHQ), a specific activator of the Keap1/Nrf2 signaling, could diminish the synergic antitumor effects of DCA and DDP on ESCC cells. Collectively, our findings indicate that PDK1 may regulate the progression of ESCC by metabolic reprogramming, which provides new strategy for the treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
19.
J Transl Med ; 21(1): 73, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737759

RESUMEN

BACKGROUND: The correlation and difference in T-cell phenotypes between peripheral blood lymphocytes (PBLs) and the tumor immune microenvironment (TIME) in patients with gastric cancer (GC) is not clear. We aimed to characterize the phenotypes of CD8+ T cells in tumor infiltrating lymphocytes (TILs) and PBLs in patients with different outcomes and to establish a useful survival prediction model. METHODS: Multiplex immunofluorescence staining and flow cytometry were used to detect the expression of inhibitory molecules (IMs) and active markers (AMs) in CD8+TILs and PBLs, respectively. The role of these parameters in the 3-year prognosis was assessed by receiver operating characteristic analysis. Then, we divided patients into two TIME clusters (TIME-A/B) and two PBL clusters (PBL-A/B) by unsupervised hierarchical clustering based on the results of multivariate analysis, and used the Kaplan-Meier method to analyze the difference in prognosis between each group. Finally, we constructed and compared three survival prediction models based on Cox regression analysis, and further validated the efficiency and accuracy in the internal and external cohorts. RESULTS: The percentage of PD-1+CD8+TILs, TIM-3+CD8+TILs, PD-L1+CD8+TILs, and PD-L1+CD8+PBLs and the density of PD-L1+CD8+TILs were independent risk factors, while the percentage of TIM-3+CD8+PBLs was an independent protective factor. The patients in the TIME-B group showed a worse 3-year overall survival (OS) (HR: 3.256, 95% CI 1.318-8.043, P = 0.006), with a higher density of PD-L1+CD8+TILs (P < 0.001) and percentage of PD-1+CD8+TILs (P = 0.017) and PD-L1+CD8+TILs (P < 0.001) compared to the TIME-A group. The patients in the PBL-B group showed higher positivity for PD-L1+CD8+PBLs (P = 0.042), LAG-3+CD8+PBLs (P < 0.001), TIM-3+CD8+PBLs (P = 0.003), PD-L1+CD4+PBLs (P = 0.001), and LAG-3+CD4+PBLs (P < 0.001) and poorer 3-year OS (HR: 0.124, 95% CI 0.017-0.929, P = 0.015) than those in the PBL-A group. In our three survival prediction models, Model 3, which was based on the percentage of TIM-3+CD8+PBLs, PD-L1+CD8+TILs and PD-1+CD8+TILs, showed the best sensitivity (0.950, 0.914), specificity (0.852, 0.857) and accuracy (κ = 0.787, P < 0.001; κ = 0.771, P < 0.001) in the internal and external cohorts, respectively. CONCLUSION: We established a comprehensive and robust survival prediction model based on the T-cell phenotype in the TIME and PBLs for GC prognosis.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Gástricas , Humanos , Antígeno B7-H1/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Neoplasias Gástricas/patología , Receptor de Muerte Celular Programada 1/metabolismo , Pronóstico , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral
20.
BMC Cancer ; 23(1): 826, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670280

RESUMEN

BACKGROUND: Hypertension is a risk factor for cholangiocarcinoma (CCA). The effect of anti-hypertensive drugs on the prognosis of CCA is not clear. METHODS: This is a retrospective study of 102 patients (56.9% males, median age 66 years) diagnosed with CCA and hypertension concurrently and received radical surgery (R0), with a median follow-up of 36.7 months. Kaplan-Meier analysis, Cox regressions, and propensity score (PS) matching were applied for statistical analysis. RESULTS: Results of multivariable cox analysis showed that renin-angiotensin system inhibitors (RASis) usage was a protective factor for progression-free survival (PFS) (hazard ratio [HR] = 0.55, 95% confidence interval [95% CI]: 0.32-0.96) and overall survival (OS) (HR = 0.40, 95% CI: 0.20-0.79), respectively. Calcium channel blockers, diuretics, and ß-blockers didn't show significant associations. The association of RASis usage and PFS and OS was derived by PS matching, with a cohort of 28 RASis users and 56 RASis non-users. The median PFS and OS of RASis users (PFS, 17.6 months (9.2-34.4); OS, 24.8 months (16.5-42.3)) were longer than RASis non-users (PFS, 10.5 months (4.1-24.1); OS, 14.6 months (10.6-28.4)). The 1 year, 2 years, and 3 years' survival rates of RASis users (89.1%, 77.0%, and 65.5%) were higher than RASis non-users (70.9%, 54.0%, and 40.0%). CONCLUSIONS: RASis usage improves the survival of patients with CCA and hypertension concurrently.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Hipertensión , Masculino , Humanos , Anciano , Femenino , Antihipertensivos , Estudios de Cohortes , Estudios Retrospectivos , Puntaje de Propensión , Sistema Renina-Angiotensina , Inhibidores Enzimáticos , Conductos Biliares Intrahepáticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda