Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Biotechnol Bioeng ; 120(7): 1773-1783, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37130074

RESUMEN

The key precursors for nylon synthesis, that is, 6-aminocaproic acid (6-ACA) and 1,6-hexamethylenediamine (HMD), are produced from petroleum-based feedstocks. A sustainable biocatalytic alternative method from bio-based adipic acid has been demonstrated recently. However, the low efficiency and specificity of carboxylic acid reductases (CARs) used in the process hampers its further application. Herein, we describe a highly accurate protein structure prediction-based virtual screening method for the discovery of new CARs, which relies on near attack conformation frequency and the Rosetta Energy Score. Through virtual screening and functional detection, five new CARs were selected, each with a broad substrate scope and the highest activities toward various di- and ω-aminated carboxylic acids. Compared with the reported CARs, KiCAR was highly specific with regard to adipic acid without detectable activity to 6-ACA, indicating a potential for 6-ACA biosynthesis. In addition, MabCAR3 had a lower Km with regard to 6-ACA than the previously validated CAR MAB4714, resulting in twice conversion in the enzymatic cascade synthesis of HMD. The present work highlights the use of structure-based virtual screening for the rapid discovery of pertinent new biocatalysts.


Asunto(s)
Ácido Aminocaproico , Oxidorreductasas , Oxidorreductasas/metabolismo , Adipatos
2.
Chembiochem ; 22(2): 345-348, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815302

RESUMEN

A single-transaminase-catalyzed biocatalytic cascade was developed by employing the desired biocatalyst, ATA-117-Rd11, that showed high activity toward 2-oxo-4-[(hydroxy)(methyl)phosphinoyl] butyric acid (PPO) and α-ketoglutarate, and low activity against pyruvate. The cascade successfully promotes a highly asymmetric amination reaction for the synthesis of l-phosphinothricin (l-PPT) with high conversion (>95 %) and>99 % ee. In a scale-up experiment, using 10 kg pre-frozen E. coli cells harboring ATA-117-Rd11 as catalyst, 80 kg PPO was converted to ≈70 kg l-PPT after 24 hours with a high ee value (>99 %).


Asunto(s)
Aminobutiratos/metabolismo , Transaminasas/metabolismo , Aminobutiratos/química , Biocatálisis , Estructura Molecular
3.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33310717

RESUMEN

The traditional strategy to improve the efficiency of an entire coupled enzyme system relies on separate direction of the evolution of enzymes involved in their respective enzymatic reactions. This strategy can lead to enhanced single-enzyme catalytic efficiency but may also lead to loss of coordination among enzymes. This study aimed to overcome such shortcomings by executing a directed evolution strategy on multiple enzymes in one combined group that catalyzes the asymmetric biosynthesis of l-phosphinothricin. The genes of a glutamate dehydrogenase from Pseudomonas moorei (PmGluDH) and a glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), along with other gene parts (promoters, ribosomal binding sites (RBSs), and terminators) were simultaneously evolved. The catalytic efficiency of PmGluDH was boosted by introducing the beneficial mutation A164G (from 1.29 s-1mM-1 to 183.52 s-1mM-1), and the EsGDH expression level was improved by optimizing the linker length between the RBS and the start codon of gdh. The total turnover numbers of the bioreaction increased from 115 (GluDH WTNADPH) to 5846 (A164GNADPH coupled with low expression of EsGDH), and to 33950 (A164GNADPH coupled with high expression of EsGDH). The coupling efficiency was increased from ∼30% (GluDH_WT with low expression of GDH) to 83.3% (GluDH_A164G with high expression of GDH). In the batch production of l-phosphinothricin utilizing whole-cell catalysis, the strongest biocatalytic reaction exhibited a high space-time yield (6410 g·L-1·d-1) with strict stereoselectivity (>99% enantiomeric excess).Importance: The traditional strategy to improve multienzyme-catalyzed reaction efficiency may lead to enhanced single-enzyme catalytic efficiency but may also result in loss of coordination among enzymes. We describe a directed evolution strategy of an entire coupled enzyme system to simultaneously enhance enzyme coordination and catalytic efficiency. The simultaneous evolution strategy was applied to a multienzyme-catalyzed reaction for the asymmetric synthesis of l-phosphinothricin, which not only enhanced the catalytic efficiency of GluDH but also improved the coordination between GluDH and GDH. Since this strategy is enzyme-independent, it may be applicable to other coupled enzyme systems for chiral chemical synthesis.

4.
ChemSusChem ; 17(6): e202400204, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38369946

RESUMEN

Invited for this issue's cover is the group of Huilei Yu at the East China University of Science and Technology. The image shows a sustainable biosynthesis route to nylon monomers from bio-based substrate α, ω-dicarboxylic acids. The Research Article itself is available at 10.1002/cssc.202301477.


Asunto(s)
Diaminas , Ácidos Grasos , Aminoácidos , China
5.
ChemSusChem ; 17(6): e202301477, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117609

RESUMEN

Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.


Asunto(s)
Aminoácidos , Diaminas , Ácidos Dicarboxílicos , Ácidos Grasos
6.
J Biotechnol ; 325: 372-379, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007350

RESUMEN

Deracemization of D,L-phosphinothricin (D,L-PPT) is one of the most promising routes for preparation of optically pure L-PPT. In this work, an efficient multi-enzyme redox cascade was developed for deracemization ofPPT, which includes oxidative reaction and reductive reaction. The oxidative reaction catalyzing oxidative deamination of D-PPT to 2-oxo-4-[(hydroxy)(-methyl)phosphinyl]butyric acid (PPO) was performed by a D-amino acid oxidase and a catalase for removing H2O2. The reductive reaction catalyzing amination of PPO to L-PPT is achieved by a glufosinate dehydrogenase and a glucose dehydrogenase for cofactor regeneration. To avoid the inhibitory effect of glucose on the oxidative reaction, a "two stages in one-pot" strategy was developed to combine these two reactions in deracemization process. By using this strategy, the L-PPT was obtained with a high yield (89 %) and > 99 % enantiomeric excess at substrate loading of 300 mM in absence of addition of extra NADP+. These encouraging results demonstrated that the developed enzyme cascade deracemization process exhibits great potential and economical competitiveness for manufacture of L-PPT from D,L-PPT.


Asunto(s)
Aminobutiratos , Peróxido de Hidrógeno , Aminobutiratos/metabolismo , Biocatálisis , Glucosa 1-Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda