Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemphyschem ; 25(17): e202400075, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38822681

RESUMEN

Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.

2.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731438

RESUMEN

It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.

3.
BMC Complement Altern Med ; 17(1): 413, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821253

RESUMEN

BACKGROUND: Kangfuxin (KFX) is the ethanol extract of Periplaneta americana L, which has been widely used in the Traditional Chinese Medicine for the repair and regeneration of injured organ and tissues with long history. This study is to investigate the influence of KFX in the various cellular activities and evaluate the anti-osteoporosis potential of KFX. METHODS: The influence of the KFX in the cellular activities, including: 1) migration, osteocalcin secretion of osteoblasts; 2) apoptosis of osteoclasts; 3) migration and tube formation of human umbilical vein endothelial cell (HUVEC); and 4) proliferation, cell cycle regulation and migration of bone marrow mesenchymal stem cells (BMSCs), were investigated systematically. RESULTS: KFX was shown to significantly 1) Promote of the migration of osteoblasts, HUVEC, and BMSCs; 2) Increase the secretion of osteocalcin and mineralization of osteoblasts; 3) Accelerate the apoptosis of osteoclasts; 4) Stimulate the proliferation and regulate the cell cycle of BMSCs. CONCLUSION: Taken together, these results provide the evidence for the osteogenesis, anti-osteoporosis and angiogenesis effects of KFX, with the mechanism of activating the bone formation through stimulating the osteoblasts and HUVECs, as well as inhibiting the bone absorption by inhibiting the osteoclasts activities. The KFX was definitely shown a promising bone turnover agent with great potential for anti-osteoporosis treatment.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis , Periplaneta , Extractos Vegetales/farmacología , Animales , Apoptosis , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Resorción Ósea/prevención & control , Ciclo Celular , Movimiento Celular , Proliferación Celular , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoporosis/prevención & control , Fitoterapia , Extractos Vegetales/uso terapéutico
4.
Chemosphere ; 361: 142547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851503

RESUMEN

The practical fabrication of quantum dot materials, including their size, shape, form, crystallinity, and chemical composition, is a crucial research area in the field of photocatalysis. Quantum dots can effectively enhance the separation and transfer of carriers and expand the utilization of visible light when used in heterogeneous junctions with wide bandgap semiconductors. Additionally, they exhibit excellent photosensitivity properties that significantly improve the material's capacity for absorbing visible light. This paper systematically presents an overview of the outstanding optical properties exhibited by quantum dots based on both domestic and international research on photocatalytic materials. Furthermore, it summarizes the research content, characteristics, and current challenges associated with common types of quantum dots and photocatalytic materials while highlighting their applications in environmental remediation and energy production. Finally, this paper anticipates future trends in the development of photocatalysis by providing valuable insights into more efficient semiconductor materials that are cost-effective yet environmentally friendly.


Asunto(s)
Restauración y Remediación Ambiental , Puntos Cuánticos , Puntos Cuánticos/química , Catálisis , Restauración y Remediación Ambiental/métodos , Procesos Fotoquímicos , Nanoestructuras/química , Semiconductores , Luz
5.
China CDC Wkly ; 5(1): 1-4, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36777470

RESUMEN

What is already known about this topic?: There is a toilet flush-soil stack-floor drain pathway of aerosol transmission in multistory and high-rise buildings, but the influencing factors are not completely clear. What is added by this report?: The poor airtightness of the connecting parts of the floor drain, as well as pressure fluctuations in the sewage pipe during toilet flushing caused by blockage of the soil stack vent, may lead to the cross-floor transmission of viral aerosols through the soil stack and floor drains. What are the implications for public health practice?: In multistory and high-rise buildings, the bathroom floor drains should be kept sealed, and floor drain connecting parts should be airtight. Furthermore, the soil stack vent should not be blocked. In this way, the cross-floor transmission of viral aerosols can be effectively reduced.

6.
Biomed Pharmacother ; 114: 108858, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30986622

RESUMEN

Kangfuxin (KFX) is the ethanol extract of Periplaneta Americana L., which has been widely used in Traditional Chinese Medicine for the treatment of injury in clinic with a long history. However, the biological influence of KFX in the different wound stages was not investigated comprehensively yet. This study aims to investigate the influence of KFX in the various wound healing activities with cellular and animal models, including the influence of KFX in 1) proliferation and cells cycle of kerationcytes and fibroblasts; 2) migration and chemotaxis of these skin cells; 3) secretion of EGF and VEGF; 4) the healing rate; 5) synthesis and deposition of different types of collagen; 6) as well as the pro-angiogenesis effect. KFX was shown to/for 1) promote the kerationcytes proliferation and regulate the cells cycle of skin fibroblasts significantly; 2) obviously stimulate the migration of kerationcytes and chemotaxis of fibroblasts; 3) the trend to promote EGF and VEGF secretion both in vitro & in vivo; 4) accelerate the wound closure, collagen synthesis and angiogenesis. KFX was demonstrated to accelerate wound healing and improve the healing quality by multiple regulation. Results of this study provide the comprehensive evidence for the application of KFX as a novel therapeutics for wound treatment.


Asunto(s)
Productos Biológicos/farmacología , Periplaneta/química , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Materia Medica/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Chin Med ; 14: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31548851

RESUMEN

Periplaneta americana L. is a Traditional Chinese Medicine that has been used in clinic treatment of various diseases for a long history. However, the therapeutic potential and the underlying mechanism of Periplaneta americana L. in the skin wound therapy was not investigated comprehensively yet. This study aims to investigate the influence of the crude ethanol extract of PAL in the different wound stages including: (1) the migration and chemotaxis to skin cells in the first stage; (2) proliferation and cells cycle of skin cells in the second stage; (3) remodeling effect and secretion of growth factors, collagens in the third stage; (4) as well as the influence in the blood vessels regeneration in the late stage. The crude ethanol extract of PAL was shown to (1) promote the keratinocytes proliferation and regulate the cells cycle of fibroblasts significantly; (2) stimulate the migration of keratinocytes and fibroblasts obviously; (3) enhance the EGF and VEGF secretion both in vitro & in vivo; (4) accelerate the wound healing, collagen synthesis and angiogenesis. The crude ethanol extract of KFX was shown a promising therapeutic agent for the wound therapy with great efficacy to accelerate the wound healing with improved quality.

8.
Eur J Pharmacol ; 823: 72-78, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408092

RESUMEN

To investigate the effects of Hydroxysafflor Yellow A (HSYA), which is derived from safflower, on the proliferation, migration and angiogenesis of cells in vitro and its potential efficacy in vivo when topically applied to a diabetic wound. Human umbilical vein endothelial cells (HUVECs) and mouse macrophage cells (RAW264.7) were used to evaluate angiogenesis and anti-inflammatory activities, respectively. The influence of HSYA on the wound scratch assay was investigated in keratinocytes. A splinted excisional wound model in rats with TIDM induced by streptozotocin was used to assess the effects of wound healing. Collagen disposition and secretion of vascular growth factors (VEGF) as well as transforming growth factor-ß1 (TGF-ß1) were evaluated by an ELISA assay and histological staining. The in vitro results showed that HSYA could significantly enhance both the neovascularization of HUVECs and the migration of keratinocytes. It showed the significant inhibitory effect on nitric oxide production, indicating the anti-inflammatory activity of HSYA. In vivo, the topical application of HSYA significantly enhanced the wound closure rate, and the time to complete wound closure was 17 days, whereas 30 days were needed with PBS treatment. Further, treatment with HSYA exhibited significant granulation tissue formation with higher collagen content, re-epithelialization and angiogenesis according to Masson's trichrome staining evaluation, VEGE and TGF-ß1 ELISA measurement. In conclusion, HSYA application could be considered a promising therapeutic strategy for treating chronic non-healing diabetic foot ulcers.


Asunto(s)
Chalcona/análogos & derivados , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Quinonas/administración & dosificación , Quinonas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Chalcona/administración & dosificación , Chalcona/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Cinética , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Drug Deliv ; 25(1): 1779-1789, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30338719

RESUMEN

Nonhealing chronic wounds on foot induced by diabetes is a complicated pathologic process. They are mainly caused by impaired neovascularization, neuropathy, and excessive inflammation. A strategy, which can accelerate the vessel network formation as well as inhibit inflammatory response at the same time, makes it possible for effective diabetic ulcers treatment. Co-delivery of multiple drugs with complementary bioactivity offers a strategy to properly treat diabetic wound. We previously demonstrated that hydroxysafflor yellow A (HSYA) could accelerate diabetic wound healing through promoting angiogenesis and reducing inflammatory response. In order to further enhance blood vessel formation, a pro-angiogenic molecular called deferoxamine (DFO) was topically co-administrated with HSYA. The in vitro results showed that the combination of DFO and HSYA exerted synergistic effect on enhancing angiogenesis by upregulation of hypoxia inducible factor-1 alpha (HIF-1α) expression. The interpenetrating polymer networks hydrogels, characterized by good breathability and water absorption, were designed for co-loading of DFO and HSYA aiming to recruit angiogenesis relative cells and upgrade wound healing in vivo. Both DFO and HSYA in hydrogel have achieved sustained release. The in vivo studies indicated that HSYA/DFO hydrogel could accelerate diabetic wound healing. With a high expression of Hif-1α which is similar to that of normal tissue. The noninvasive US/PA imaging revealed that the wound could be recovered completely with abundant blood perfusion in dermis after given HSYA/DFO hydrogel for 28 days. In conclusion, combination of pro-angiogenic small molecule DFO and HSYA in hydrogel provides a promising strategy to productively promote diabetic wound healing as well as better the repair quality.


Asunto(s)
Chalcona/análogos & derivados , Deferoxamina/administración & dosificación , Sistemas de Liberación de Medicamentos , Neovascularización Fisiológica/efectos de los fármacos , Quinonas/administración & dosificación , Sideróforos/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Chalcona/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Quimioterapia Combinada , Humanos , Masculino , Ratas Sprague-Dawley
10.
Int J Nanomedicine ; 12: 3881-3898, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28579775

RESUMEN

Capsaicin has been used in clinical applications for the treatment of pain disorders and inflammatory diseases. Given the strong pungency and high oil/water partition coefficient of capsaicin, capsaicin-loaded nanolipoidal carriers (NLCs) were designed to increase permeation and achieve the analgesic, anti-inflammatory effect with lower skin irritation. Capsaicin-loaded NLCs were prepared and later optimized by the Box-Behnken design. The physicochemical characterizations, morphology, and encapsulation of the capsaicin-loaded NLCs were subsequently confirmed. Capsaicin-loaded NLCs and capsaicin-loaded NLCs gel exhibited sustained release and no cytotoxicity properties. Also, they could significantly enhance the penetration amount, permeation flux, and skin retention amounts of capsaicin due to the application of NLCs. To study the topical permeation mechanism of capsaicin, 3,3'-dioctadecyloxacarbocyanine perchlorate (Dio) was used as a fluorescent dye. Dio-loaded NLCs and Dio-loaded NLCs gel could effectively deliver Dio up to a skin depth of 260 and 210 µm, respectively, primarily through the appendage route on the basis of version skin sections compared with Dio solution, which only delivered Dio up to 150 µm. In vivo therapeutic experiments demonstrated that capsaicin-loaded NLCs and capsaicin-loaded NLCs gel could improve the pain threshold in a dose-dependent manner and inhibit inflammation, primarily by reducing the prostaglandin E2 levels in the tissue compared with capsaicin cream and capsaicin solution. Meanwhile, skin irritation was reduced, indicating that application of NLCs could decrease the irritation caused by capsaicin. Overall, NLCs may be a potential carrier for topical delivery of capsaicin for useful pain and inflammation therapy.


Asunto(s)
Capsaicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Nanocompuestos/administración & dosificación , Administración Tópica , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Capsaicina/química , Capsaicina/farmacología , Carbocianinas/administración & dosificación , Carbocianinas/farmacocinética , Dermatitis/tratamiento farmacológico , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Femenino , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Lípidos/química , Masculino , Ratones Endogámicos ICR , Nanocompuestos/química , Tamaño de la Partícula , Conejos , Ratas , Ratas Sprague-Dawley , Absorción Cutánea
11.
Phys Rev E ; 93(5): 053307, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27301005

RESUMEN

The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.

12.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 28(2): 190-4, 2010 Apr.
Artículo en Zh | MEDLINE | ID: mdl-20480666

RESUMEN

OBJECTIVE: To investigate the differently expressed Homeobox genes between adenoid cystic carcinoma of salivary gland and normal gland tissue, and find out the effect of homeobox genes on oncogenesis and differentiation of adenoid cystic carcinoma of salivary gland. METHODS: Six strictly paired specimens including adenoid cystic carcinoma and its surrounding normal gland tissue and two pairs of specimens including cell strain of adenoid cystic carcinoma and its surrounding normal gland tissue were established. Customized Oligo microarray which contains probes of 232 human homeobox genes was used to analyze and conclude two groups of different genes data. RT-PCR technique was used to examine the mRNA expressing level of highly suspected relevant genes of adenoid cystic carcinoma in different specimens. Obvious differently expressed Homeobox genes were found through statistical analyses. RESULTS: In tissue specimens homeobox genes were found 67 up-regulated and 54 down-regulated, and in cell specimens homeobox genes were found 12 up-regulated and 15 down-regulated. One up-regulated gene and 7 down-regulated genes were found both in tissue and cell specimens, among which EVX1 and PITX1 were the most frequent. RT-PCI showed that there was statistical expressing difference between TGIF, EVX1 and normal gland tissue in ACC-M. CONCLUSION: As the key gene to cellular proliferation and differentiation, homeobox genes are closely relevant to the oncogenesis of adenoid cystic carcinoma of salivary gland.


Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Genes Homeobox , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda